A Sustainable Solid Electrolyte Interphase for High‐Energy‐Density Lithium Metal Batteries Under Practical Conditions

High‐energy‐density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 8; pp. 3252 - 3257
Main Authors Zhang, Xue‐Qiang, Li, Tao, Li, Bo‐Quan, Zhang, Rui, Shi, Peng, Yan, Chong, Huang, Jia‐Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.02.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High‐energy‐density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co‐solvents with sustained‐release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high‐loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm−2), and lean electrolytes (6.1 g Ah−1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg−1 for 60 cycles with lean electrolytes (2.3 g Ah−1). A solid electrolyte interphase (SEI) was proposed for practical high‐energy‐density Li batteries. The intrinsic uniformity and the constant supplements of building blocks of SEI jointly afford a sustainable SEI. A pouch cell with a specific energy of 340 Wh kg−1 underwent 60 cycles with a retention of 90 %.
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201911724