Internal dosimetry for radioembolization therapy with Yttrium‐90 microspheres

The absorbed doses in the liver and adjacent viscera in Yttrium‐90 radioembolization therapy for metastatic liver lesions are not well‐documented. We sought for a clinically practical way to determine the dosimetry of this advent treatment. Six different female XCAT BMIs and seven different male XCA...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied clinical medical physics Vol. 18; no. 2; pp. 176 - 180
Main Authors Fallahpoor, Maryam, Abbasi, Mehrshad, Parach, Ali Asghar, Kalantari, Faraz
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.03.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The absorbed doses in the liver and adjacent viscera in Yttrium‐90 radioembolization therapy for metastatic liver lesions are not well‐documented. We sought for a clinically practical way to determine the dosimetry of this advent treatment. Six different female XCAT BMIs and seven different male XCAT BMIs were generated. Using Monte Carlo GATE code simulation, the total of 100MBq 90Y was deposited uniformly in the source organ, liver. Self‐irradiation and absorbed doses in lung, kidney and bone marrow were calculated. The mean energy of Yittrium‐90 (i.e., 0.937 MeV) was used. The S‐values and equivalent doses in target organs were estimated. The dose absorbed in the liver was between 84 and 53 Gy and below the target of 80 to 150 Gy. The absorbed dose in the bone marrow, lungs, and kidneys are very low and below 0.1 , 0.4, and 0.5 Gy respectively. Our study indicates that larger activities than the conventional dose of 3 GBq may be both required and safe. Further confirmations in clinical settings are needed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1526-9914
1526-9914
DOI:10.1002/acm2.12042