Internal dosimetry for radioembolization therapy with Yttrium‐90 microspheres
The absorbed doses in the liver and adjacent viscera in Yttrium‐90 radioembolization therapy for metastatic liver lesions are not well‐documented. We sought for a clinically practical way to determine the dosimetry of this advent treatment. Six different female XCAT BMIs and seven different male XCA...
Saved in:
Published in | Journal of applied clinical medical physics Vol. 18; no. 2; pp. 176 - 180 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.03.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The absorbed doses in the liver and adjacent viscera in Yttrium‐90 radioembolization therapy for metastatic liver lesions are not well‐documented. We sought for a clinically practical way to determine the dosimetry of this advent treatment. Six different female XCAT BMIs and seven different male XCAT BMIs were generated. Using Monte Carlo GATE code simulation, the total of 100MBq 90Y was deposited uniformly in the source organ, liver. Self‐irradiation and absorbed doses in lung, kidney and bone marrow were calculated. The mean energy of Yittrium‐90 (i.e., 0.937 MeV) was used. The S‐values and equivalent doses in target organs were estimated. The dose absorbed in the liver was between 84 and 53 Gy and below the target of 80 to 150 Gy. The absorbed dose in the bone marrow, lungs, and kidneys are very low and below 0.1 , 0.4, and 0.5 Gy respectively. Our study indicates that larger activities than the conventional dose of 3 GBq may be both required and safe. Further confirmations in clinical settings are needed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1526-9914 1526-9914 |
DOI: | 10.1002/acm2.12042 |