Bio‐Coreactant‐Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport

A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biom...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 9; pp. 4907 - 4914
Main Authors Ma, Cheng, Wu, Shaojun, Zhou, Yang, Wei, Hui‐Fang, Zhang, Jianrong, Chen, Zixuan, Zhu, Jun‐Jie, Lin, Yuehe, Zhu, Wenlei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 23.02.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202012171

Cover

Loading…
Abstract A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a “catalytic route”. Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time‐resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single‐cell studies, the bio‐coreactant‐enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR‐1. Amine‐rich biomolecules as consumed coreactants drive electrochemiluminescence with Ru(bpy)32+, enabling bio‐coreactant‐enhanced single‐cell electrochemiluminescence microscopy. This allows the imaging of intracellular hierarchical structures without the use of multiple labels. Dynamic signals disclose the universal edge effect of cellular electroporation and enable the visualization of heterogeneous molecular transport.
AbstractList A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a “catalytic route”. Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time‐resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single‐cell studies, the bio‐coreactant‐enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR‐1. Amine‐rich biomolecules as consumed coreactants drive electrochemiluminescence with Ru(bpy)32+, enabling bio‐coreactant‐enhanced single‐cell electrochemiluminescence microscopy. This allows the imaging of intracellular hierarchical structures without the use of multiple labels. Dynamic signals disclose the universal edge effect of cellular electroporation and enable the visualization of heterogeneous molecular transport.
A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a “catalytic route”. Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time‐resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single‐cell studies, the bio‐coreactant‐enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR‐1.
A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a "catalytic route". Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time-resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single-cell studies, the bio-coreactant-enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR-1.A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a "catalytic route". Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time-resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single-cell studies, the bio-coreactant-enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR-1.
A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy) 3 2+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a “catalytic route”. Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time‐resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy) 3 3+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single‐cell studies, the bio‐coreactant‐enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR‐1.
A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy) as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a "catalytic route". Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time-resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy) in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single-cell studies, the bio-coreactant-enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR-1.
Author Wei, Hui‐Fang
Zhu, Jun‐Jie
Ma, Cheng
Wu, Shaojun
Zhou, Yang
Zhang, Jianrong
Lin, Yuehe
Chen, Zixuan
Zhu, Wenlei
Author_xml – sequence: 1
  givenname: Cheng
  surname: Ma
  fullname: Ma, Cheng
  organization: Nanjing University
– sequence: 2
  givenname: Shaojun
  surname: Wu
  fullname: Wu, Shaojun
  organization: Nanjing University
– sequence: 3
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: Washington State University
– sequence: 4
  givenname: Hui‐Fang
  surname: Wei
  fullname: Wei, Hui‐Fang
  organization: Nanjing University
– sequence: 5
  givenname: Jianrong
  surname: Zhang
  fullname: Zhang, Jianrong
  organization: Nanjing University
– sequence: 6
  givenname: Zixuan
  surname: Chen
  fullname: Chen, Zixuan
  email: chenzixuan@nju.edu.cn
  organization: Nanjing University
– sequence: 7
  givenname: Jun‐Jie
  surname: Zhu
  fullname: Zhu, Jun‐Jie
  organization: Nanjing University
– sequence: 8
  givenname: Yuehe
  orcidid: 0000-0003-3791-7587
  surname: Lin
  fullname: Lin, Yuehe
  email: yuehe.lin@wsu.edu
  organization: Washington State University
– sequence: 9
  givenname: Wenlei
  surname: Zhu
  fullname: Zhu, Wenlei
  email: wenlei.zhu@wsu.edu
  organization: Washington State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33188721$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq3DAUhkVJaC7ttsti6CYbT3SxZWmZDtN2IJdFZm808hGjwZYmkkyYXR4hz9gnqcykKQRCVzrS-f6jw_-foSPnHSD0heAZwZheKmdhRjHFhJKGfECnpKakZE3DjnJdMVY2oiYn6CzGbeaFwPwjOmGMCNFQcoo2363__fQ89wGUTsqlfFm4jXIaumLRg07B6w0Mth8H6yBqyJ3ixurgo_a7feFNsXQpKA19P_YqFPcpjDqNAQrlumIVlIs7H9IndGxUH-Hzy3mOVj8Wq_mv8vru53J-dV3qquGklJyCorI2gvNKy_zGOzDSUKEN40ZDAx3VWMpKVMYw0omOMaGYkGtFoWbn6OIwdhf8wwgxtYON027KgR9jSyuOG45ZJTP67Q269WNweblMCVkTQSjO1NcXalwP0LW7YAcV9u1fCzMwOwCTJTGAeUUIbqeM2imj9jWjLKjeCLRNKlk_2Wj792XyIHu0Pez_80l7dbtc_NP-AVSVqPU
CitedBy_id crossref_primary_10_1039_D4NR04423A
crossref_primary_10_1002_anie_202421658
crossref_primary_10_1021_acs_analchem_3c01822
crossref_primary_10_1021_jacs_4c07566
crossref_primary_10_1016_j_bios_2022_114629
crossref_primary_10_1002_ange_202314588
crossref_primary_10_1039_D3SC01329D
crossref_primary_10_1021_acs_analchem_2c04297
crossref_primary_10_1002_anie_202215078
crossref_primary_10_1002_anie_202304625
crossref_primary_10_1016_j_trac_2024_118103
crossref_primary_10_1021_acs_analchem_1c04006
crossref_primary_10_1002_anie_202101467
crossref_primary_10_1021_acs_analchem_3c01718
crossref_primary_10_1021_acs_analchem_1c00602
crossref_primary_10_1021_acs_analchem_3c00869
crossref_primary_10_1002_anie_202117401
crossref_primary_10_1007_s44211_025_00723_x
crossref_primary_10_1016_j_bios_2022_114699
crossref_primary_10_1002_anie_202407588
crossref_primary_10_1016_j_electacta_2022_140240
crossref_primary_10_1021_acs_analchem_1c05065
crossref_primary_10_1016_j_bioelechem_2022_108192
crossref_primary_10_1007_s40242_022_2036_7
crossref_primary_10_1039_D2AN00709F
crossref_primary_10_1002_cptc_202200124
crossref_primary_10_1016_j_coelec_2022_101096
crossref_primary_10_1016_j_snb_2022_132288
crossref_primary_10_1016_j_snb_2024_136679
crossref_primary_10_1002_anie_202218574
crossref_primary_10_1039_D2AN00352J
crossref_primary_10_1021_cbmi_2c00007
crossref_primary_10_3389_fchem_2021_688358
crossref_primary_10_1002_cbic_202400389
crossref_primary_10_1021_acs_analchem_2c04425
crossref_primary_10_1039_D2SC01317G
crossref_primary_10_1002_cjoc_202200134
crossref_primary_10_2139_ssrn_4121318
crossref_primary_10_1002_open_202200113
crossref_primary_10_1002_cjoc_202100330
crossref_primary_10_1021_jacs_1c00001
crossref_primary_10_1021_acs_analchem_3c02183
crossref_primary_10_34133_research_0257
crossref_primary_10_1039_D2AN01159J
crossref_primary_10_1016_j_jelechem_2022_116569
crossref_primary_10_1016_j_snb_2023_133885
crossref_primary_10_1016_j_aca_2023_341920
crossref_primary_10_1039_D0SC07085H
crossref_primary_10_1002_ange_202421658
crossref_primary_10_1021_acs_analchem_2c02479
crossref_primary_10_1021_acs_analchem_4c02100
crossref_primary_10_1002_anie_202314588
crossref_primary_10_1021_acsnano_3c05619
crossref_primary_10_1021_jacs_1c07827
crossref_primary_10_1016_j_electacta_2023_142507
crossref_primary_10_1021_acs_analchem_2c04663
crossref_primary_10_1002_ange_202215078
crossref_primary_10_1039_D2SC03868D
crossref_primary_10_1002_ange_202105867
crossref_primary_10_1021_jacs_3c04250
crossref_primary_10_1002_cjoc_202100685
crossref_primary_10_1016_j_talo_2022_100088
crossref_primary_10_1016_j_electacta_2024_144256
crossref_primary_10_1002_ange_202117401
crossref_primary_10_1002_agt2_417
crossref_primary_10_1039_D4FD00137K
crossref_primary_10_1002_celc_202200236
crossref_primary_10_1021_acsami_4c13803
crossref_primary_10_1021_acs_analchem_3c02960
crossref_primary_10_1021_acssensors_3c01878
crossref_primary_10_1002_adfm_202200863
crossref_primary_10_1039_D2CC04597D
crossref_primary_10_1002_ange_202218574
crossref_primary_10_1002_anie_202105867
crossref_primary_10_1002_anie_202216525
crossref_primary_10_1021_acs_analchem_1c04608
crossref_primary_10_1021_jacs_1c06673
crossref_primary_10_1021_cbmi_3c00066
crossref_primary_10_1002_ange_202407588
crossref_primary_10_1002_ange_202304625
crossref_primary_10_1002_smll_202406374
crossref_primary_10_1021_acs_analchem_2c05698
crossref_primary_10_1021_acs_analchem_3c02726
crossref_primary_10_1021_acs_analchem_1c02675
crossref_primary_10_1016_j_coelec_2023_101270
crossref_primary_10_3390_bios13020200
crossref_primary_10_1039_D2CC06499E
crossref_primary_10_3389_fchem_2022_872582
crossref_primary_10_1002_advs_202411956
crossref_primary_10_1039_D3SC05983A
crossref_primary_10_1021_acs_analchem_2c01480
crossref_primary_10_1039_D4AN00470A
crossref_primary_10_1021_acsnano_2c11934
crossref_primary_10_3390_chemosensors11100538
crossref_primary_10_1002_ange_202308950
crossref_primary_10_1016_j_snb_2024_136597
crossref_primary_10_1021_acssensors_2c01195
crossref_primary_10_1021_acs_nanolett_4c04487
crossref_primary_10_1021_jacs_3c12913
crossref_primary_10_1016_j_bios_2023_115741
crossref_primary_10_1016_j_jelechem_2021_115891
crossref_primary_10_1016_j_esci_2022_10_004
crossref_primary_10_1016_j_cej_2024_150000
crossref_primary_10_1002_elan_202100341
crossref_primary_10_1021_acs_analchem_4c03868
crossref_primary_10_1016_j_coelec_2022_101034
crossref_primary_10_1021_jacs_4c17749
crossref_primary_10_1021_acs_analchem_1c04593
crossref_primary_10_1016_j_jelechem_2022_116594
crossref_primary_10_1016_j_jelechem_2023_117220
crossref_primary_10_1016_j_coelec_2022_101036
crossref_primary_10_1002_ange_202101467
crossref_primary_10_1002_ange_202216525
crossref_primary_10_1002_anse_202100037
crossref_primary_10_1002_anie_202308950
Cites_doi 10.1038/nchem.961
10.1002/ange.201800706
10.1073/pnas.0708669104
10.1038/ncomms12109
10.1021/jacs.9b03007
10.1039/C8SC02251H
10.1038/nmeth.1841
10.1039/C1CS15265C
10.1002/anie.202002323
10.1021/ja0296529
10.1038/s41592-020-0793-0
10.1002/anie.201800706
10.1021/jp022085r
10.1016/S0302-4598(97)00023-8
10.1021/ja5112628
10.1002/chem.201501342
10.1016/j.cell.2014.02.010
10.1021/ja901876z
10.1021/cr068083a
10.1038/nrm2184
10.1002/anie.201911190
10.12703/P7-48
10.1039/C5CS00657K
10.1021/ar700245e
10.1021/jacs.7b09260
10.1201/9780203027011
10.1016/S0006-3495(91)82054-9
10.1038/nnano.2017.3
10.1021/acs.analchem.6b01073
10.1016/S0958-1669(02)00003-4
10.1021/ja00140a006
10.1021/ac00133a017
10.1002/ange.202004634
10.1021/acs.nanolett.0c01129
10.1042/BJ20111451
10.1126/science.1192033
10.1002/ange.201911190
10.1021/acs.analchem.8b04778
10.1016/j.medengphy.2015.08.002
10.1073/pnas.1804548115
10.1038/s41467-017-01614-0
10.1016/j.bios.2013.05.041
10.1073/pnas.95.18.10356
10.1021/cr068062g
10.1021/ac034974w
10.1016/S0006-3495(01)75851-1
10.1073/pnas.0307588100
10.1038/ncomms5494
10.1002/anie.202004634
10.1038/s41467-020-16476-2
10.1021/acs.analchem.6b00150
10.1021/ja027532v
10.1039/C4SC00312H
10.1021/jacs.8b08080
10.1126/sciadv.1700171
10.1038/352638a0
10.1073/pnas.1203570109
10.1002/jcb.2400510407
10.1016/j.tibs.2010.07.007
10.1002/ange.202002323
10.1021/jp002880
10.1021/acs.chemrev.6b00638
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202012171
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 4914
ExternalDocumentID 33188721
10_1002_anie_202012171
ANIE202012171
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  funderid: 21974065, 21834004 and 21904063
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20190279,BK20200059
– fundername: Nanjing University
  funderid: ZYJH004
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 020514380173 and 021314380151
– fundername: Washington State University
  funderid: Start-up Fund
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4761-962ea295f8664c94766def9f28cf36fce7ed2c099484ff31d8d338a389ba2e53
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:11:42 EDT 2025
Sun Jul 13 05:16:57 EDT 2025
Thu Apr 03 07:13:31 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Tue Jul 01 01:17:51 EDT 2025
Wed Jan 22 16:31:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords electrochemiluminescence
bioelectrochemistry
microscopy
electrochemistry
single-cell studies
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-962ea295f8664c94766def9f28cf36fce7ed2c099484ff31d8d338a389ba2e53
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3791-7587
PMID 33188721
PQID 2489518120
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2460760349
proquest_journals_2489518120
pubmed_primary_33188721
crossref_primary_10_1002_anie_202012171
crossref_citationtrail_10_1002_anie_202012171
wiley_primary_10_1002_anie_202012171_ANIE202012171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 23, 2021
PublicationDateYYYYMMDD 2021-02-23
PublicationDate_xml – month: 02
  year: 2021
  text: February 23, 2021
  day: 23
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 352
2007; 104
2019; 91
2015; 37
2017; 8
2012; 441
2017; 3
2020; 20
1997; 43
2020 2020; 59 132
2020; 17
2008; 108
2003; 14
1991; 60
2020; 11
2017; 117
2001; 105
2004; 76
2018; 9
2014; 5
2015; 137
2018 2018; 57 130
2013; 50
2007; 8
2003; 125
1998; 95
2016; 45
2016; 88
2004; 101
2010; 329
2018; 140
1995; 117
2004
2009; 131
2002
2011; 36
2019; 141
2011; 3
2015; 7
2012; 109
2017; 139
1987; 59
2014; 157
2001; 81
2016; 7
2003; 107
1993; 51
2002; 124
2018; 115
2017; 12
2015; 21
2020 2020
2008; 41
2012; 41
2012; 9
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_2
e_1_2_6_72_1
e_1_2_6_70_2
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_34_3
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_43_1
e_1_2_6_64_2
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
Ju H. (e_1_2_6_31_2) 2020
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_66_1
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_75_2
e_1_2_6_54_1
e_1_2_6_71_2
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_18_3
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_14_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_12_1
e_1_2_6_31_3
e_1_2_6_16_2
e_1_2_6_16_3
e_1_2_6_39_1
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_42_1
e_1_2_6_63_2
e_1_2_6_65_1
e_1_2_6_21_1
Alberts B. (e_1_2_6_48_1) 2002
e_1_2_6_40_2
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_44_2
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_67_2
e_1_2_6_69_1
e_1_2_6_25_2
References_xml – volume: 104
  start-page: 17255
  year: 2007
  end-page: 17260
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 36
  start-page: 30
  year: 2011
  end-page: 38
  publication-title: Trends Biochem. Sci.
– volume: 11
  start-page: 2668
  year: 2020
  publication-title: Nat. Commun.
– volume: 51
  start-page: 426
  year: 1993
  end-page: 435
  publication-title: J. Cell. Biochem.
– volume: 141
  start-page: 10294
  year: 2019
  end-page: 10299
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 2061
  year: 2012
  end-page: 2071
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 1211
  year: 2016
  end-page: 1224
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 12109
  year: 2016
  publication-title: Nat. Commun.
– volume: 21
  start-page: 12640
  year: 2015
  end-page: 12645
  publication-title: Chem. Eur. J.
– volume: 131
  start-page: 6088
  year: 2009
  end-page: 6089
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 210
  year: 2001
  end-page: 216
  publication-title: J. Phys. Chem. B
– volume: 91
  start-page: 1121
  year: 2019
  end-page: 1125
  publication-title: Anal. Chem.
– volume: 137
  start-page: 1903
  year: 2015
  end-page: 1908
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1498
  year: 2017
  publication-title: Nat. Commun.
– volume: 88
  start-page: 2006
  year: 2016
  end-page: 2009
  publication-title: Anal. Chem.
– volume: 329
  start-page: 830
  year: 2010
  end-page: 834
  publication-title: Science
– volume: 107
  start-page: 372
  year: 2003
  end-page: 378
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 2568
  year: 2014
  end-page: 2572
  publication-title: Chem. Sci.
– volume: 5
  start-page: 4494
  year: 2014
  publication-title: Nat. Commun.
– volume: 88
  start-page: 4609
  year: 2016
  end-page: 4612
  publication-title: Anal. Chem.
– year: 2004
– volume: 3
  start-page: 249
  year: 2011
  end-page: 255
  publication-title: Nat. Chem.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 43
  start-page: 285
  year: 1997
  end-page: 291
  publication-title: Bioelectrochem. Bioenerg.
– volume: 14
  start-page: 29
  year: 2003
  end-page: 34
  publication-title: Curr. Opin. Biotechnol.
– volume: 59 132
  start-page: 15157 15269
  year: 2020 2020
  end-page: 15160 15272
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 124
  start-page: 14478
  year: 2002
  end-page: 14485
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 2585
  year: 2008
  end-page: 2621
  publication-title: Chem. Rev.
– volume: 57 130
  start-page: 4010 4074
  year: 2018 2018
  end-page: 4014 4078
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 449 457
  year: 2020 2020
  end-page: 456 464
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 4342
  year: 2017
  end-page: 4375
  publication-title: Chem. Rev.
– volume: 59 132
  start-page: 10416 10502
  year: 2020 2020
  end-page: 10420 10506
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 108
  start-page: 2506
  year: 2008
  end-page: 2553
  publication-title: Chem. Rev.
– volume: 352
  start-page: 638
  year: 1991
  end-page: 640
  publication-title: Nature
– volume: 95
  start-page: 10356
  year: 1998
  end-page: 10360
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 101
  start-page: 1554
  year: 2004
  end-page: 1559
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 441
  start-page: 523
  year: 2012
  end-page: 540
  publication-title: Biochem. J.
– volume: 41
  start-page: 1075
  year: 2008
  end-page: 1083
  publication-title: Acc. Chem. Res.
– volume: 157
  start-page: 8
  year: 2014
  end-page: 11
  publication-title: Cell
– volume: 139
  start-page: 16830
  year: 2017
  end-page: 16837
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 14753
  year: 2018
  end-page: 14760
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 460
  year: 2017
  end-page: 466
  publication-title: Nat. Nanotechnol.
– volume: 60
  start-page: 297
  year: 1991
  end-page: 306
  publication-title: Biophys. J.
– volume: 7
  start-page: 48
  year: 2015
  publication-title: F1000prime reports
– volume: 17
  start-page: 524
  year: 2020
  end-page: 530
  publication-title: Nat. Methods
– volume: 20
  start-page: 5008
  year: 2020
  end-page: 5016
  publication-title: Nano Lett.
– volume: 76
  start-page: 357
  year: 2004
  end-page: 364
  publication-title: Anal. Chem.
– year: 2002
– volume: 117
  start-page: 8933
  year: 1995
  end-page: 8938
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 11540
  year: 2012
  end-page: 11545
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 125
  start-page: 5213
  year: 2003
  end-page: 5218
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 574
  year: 2007
  end-page: 585
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 81
  start-page: 2010
  year: 2001
  end-page: 2019
  publication-title: Biophys. J.
– volume: 9
  start-page: 6167
  year: 2018
  end-page: 6175
  publication-title: Chem. Sci.
– volume: 9
  start-page: 185
  year: 2012
  end-page: 188
  publication-title: Nat. Methods
– volume: 50
  start-page: 294
  year: 2013
  end-page: 299
  publication-title: Biosens. Bioelectron.
– volume: 115
  start-page: 10275
  year: 2018
  end-page: 10280
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 37
  start-page: 1015
  year: 2015
  end-page: 1019
  publication-title: Med. Eng. Phys.
– volume: 59
  start-page: 865
  year: 1987
  end-page: 868
  publication-title: Anal. Chem.
– ident: e_1_2_6_70_2
  doi: 10.1038/nchem.961
– ident: e_1_2_6_18_3
  doi: 10.1002/ange.201800706
– ident: e_1_2_6_49_1
  doi: 10.1073/pnas.0708669104
– ident: e_1_2_6_56_2
  doi: 10.1038/ncomms12109
– ident: e_1_2_6_14_1
– ident: e_1_2_6_30_2
  doi: 10.1021/jacs.9b03007
– ident: e_1_2_6_20_1
  doi: 10.1039/C8SC02251H
– ident: e_1_2_6_73_1
  doi: 10.1038/nmeth.1841
– ident: e_1_2_6_36_1
– ident: e_1_2_6_4_1
– ident: e_1_2_6_5_2
  doi: 10.1039/C1CS15265C
– ident: e_1_2_6_34_2
  doi: 10.1002/anie.202002323
– ident: e_1_2_6_38_2
  doi: 10.1021/ja0296529
– ident: e_1_2_6_72_1
  doi: 10.1038/s41592-020-0793-0
– ident: e_1_2_6_18_2
  doi: 10.1002/anie.201800706
– ident: e_1_2_6_44_2
  doi: 10.1021/jp022085r
– ident: e_1_2_6_68_2
  doi: 10.1016/S0302-4598(97)00023-8
– ident: e_1_2_6_55_1
– ident: e_1_2_6_58_2
  doi: 10.1021/ja5112628
– ident: e_1_2_6_66_1
– ident: e_1_2_6_69_1
– ident: e_1_2_6_61_1
– ident: e_1_2_6_22_2
  doi: 10.1002/chem.201501342
– ident: e_1_2_6_3_2
  doi: 10.1016/j.cell.2014.02.010
– ident: e_1_2_6_9_1
– ident: e_1_2_6_23_2
  doi: 10.1021/ja901876z
– ident: e_1_2_6_13_1
  doi: 10.1021/cr068083a
– ident: e_1_2_6_53_1
  doi: 10.1038/nrm2184
– ident: e_1_2_6_25_1
  doi: 10.1002/anie.201911190
– ident: e_1_2_6_52_1
  doi: 10.12703/P7-48
– ident: e_1_2_6_7_1
  doi: 10.1039/C5CS00657K
– ident: e_1_2_6_45_2
  doi: 10.1021/ar700245e
– ident: e_1_2_6_28_2
  doi: 10.1021/jacs.7b09260
– ident: e_1_2_6_37_2
  doi: 10.1201/9780203027011
– ident: e_1_2_6_64_2
  doi: 10.1016/S0006-3495(91)82054-9
– ident: e_1_2_6_1_1
– ident: e_1_2_6_12_1
  doi: 10.1038/nnano.2017.3
– ident: e_1_2_6_31_3
– ident: e_1_2_6_35_2
  doi: 10.1021/acs.analchem.6b01073
– ident: e_1_2_6_63_2
  doi: 10.1016/S0958-1669(02)00003-4
– volume-title: The Chemical Components of a Cell, Molecular Biology of the Cell
  year: 2002
  ident: e_1_2_6_48_1
– ident: e_1_2_6_51_1
  doi: 10.1021/ja00140a006
– ident: e_1_2_6_46_1
  doi: 10.1021/ac00133a017
– ident: e_1_2_6_16_3
  doi: 10.1002/ange.202004634
– ident: e_1_2_6_19_2
  doi: 10.1021/acs.nanolett.0c01129
– ident: e_1_2_6_74_1
– ident: e_1_2_6_57_2
  doi: 10.1042/BJ20111451
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1192033
– year: 2020
  ident: e_1_2_6_31_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_6_39_1
– ident: e_1_2_6_25_2
  doi: 10.1002/ange.201911190
– ident: e_1_2_6_26_1
  doi: 10.1021/acs.analchem.8b04778
– ident: e_1_2_6_67_2
  doi: 10.1016/j.medengphy.2015.08.002
– ident: e_1_2_6_17_1
– ident: e_1_2_6_6_2
  doi: 10.1073/pnas.1804548115
– ident: e_1_2_6_50_1
  doi: 10.1038/s41467-017-01614-0
– ident: e_1_2_6_47_1
  doi: 10.1016/j.bios.2013.05.041
– ident: e_1_2_6_65_1
  doi: 10.1073/pnas.95.18.10356
– ident: e_1_2_6_11_2
  doi: 10.1021/cr068062g
– ident: e_1_2_6_41_2
  doi: 10.1021/ac034974w
– ident: e_1_2_6_75_2
  doi: 10.1016/S0006-3495(01)75851-1
– ident: e_1_2_6_27_1
– ident: e_1_2_6_71_2
  doi: 10.1073/pnas.0307588100
– ident: e_1_2_6_76_2
  doi: 10.1038/ncomms5494
– ident: e_1_2_6_16_2
  doi: 10.1002/anie.202004634
– ident: e_1_2_6_21_1
– ident: e_1_2_6_32_1
– ident: e_1_2_6_15_2
  doi: 10.1038/s41467-020-16476-2
– ident: e_1_2_6_33_2
  doi: 10.1021/acs.analchem.6b00150
– ident: e_1_2_6_42_1
  doi: 10.1021/ja027532v
– ident: e_1_2_6_24_2
  doi: 10.1039/C4SC00312H
– ident: e_1_2_6_29_2
  doi: 10.1021/jacs.8b08080
– ident: e_1_2_6_60_1
  doi: 10.1126/sciadv.1700171
– ident: e_1_2_6_54_1
  doi: 10.1038/352638a0
– ident: e_1_2_6_10_2
  doi: 10.1073/pnas.1203570109
– ident: e_1_2_6_43_1
– ident: e_1_2_6_62_2
  doi: 10.1002/jcb.2400510407
– ident: e_1_2_6_59_1
  doi: 10.1016/j.tibs.2010.07.007
– ident: e_1_2_6_34_3
  doi: 10.1002/ange.202002323
– ident: e_1_2_6_40_2
  doi: 10.1021/jp002880
– ident: e_1_2_6_2_2
  doi: 10.1021/acs.chemrev.6b00638
SSID ssj0028806
Score 2.6254377
Snippet A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy...
A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4907
SubjectTerms Actin
Animals
Autophagy
bioelectrochemistry
Biomolecules
Cell membranes
Cytoskeleton
Damage detection
DNA damage
DNA Damage - drug effects
Edge effect
Electrochemical Techniques
Electrochemiluminescence
Electrochemistry
Electrodes
Electroporation
HeLa Cells
Humans
Image enhancement
Image processing
Intracellular
Liver - microbiology
Liver - pathology
Luminescent Measurements
Mice
Microscopy
Microscopy, Atomic Force
Microscopy, Fluorescence - methods
Organometallic Compounds - chemistry
Organometallic Compounds - pharmacology
Phagocytosis
Reactive Oxygen Species - metabolism
Shewanella - isolation & purification
Single-Cell Analysis
single-cell studies
Title Bio‐Coreactant‐Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202012171
https://www.ncbi.nlm.nih.gov/pubmed/33188721
https://www.proquest.com/docview/2489518120
https://www.proquest.com/docview/2460760349
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwL4WCjITEKV1sx3GOpSoCJHqAInGLHMdWEShBtD3AiU_gG_kSZpImUBBCgkskJ-MlXp_tmTeEHMKib4XmzhMyhkfLCS92nHmx9hPLAs2Fydk--_L0Wpzf-DefrPgLfojqwA1HRj5f4wDX8aj5QRqKFtiwv2NISpYbkaPCFqKiy4o_ikHnLMyLOPfQC33J2thizdnos6vSN6g5i1zzpedkmeiy0IXGyV1jMo4b5vkLn-N__mqFLE1xKe0UHWmVzNl0jSx0S3dw62R4fJu9vbx2M0CZBl0PQ6CXDnMFAtornOkYFIfZDlXpDU4Z9AL1_dDy5Ylmjp7hSTJeFaDuK73KqWsnj5bqNKEVy_oGGZz0Bt1Tb-qmwTMikG0vlMxqFvpOSSlMCO9kYl3omDKOS2dsYBNmAIkKJZzj7UQlsC_WgJRizazPN8l8mqV2m9CEK6aVFM5qH1ICGSOkNFYxF0DCrRrxylaKzJTCHD1p3EcF-TKLsPqiqvpq5KiSfyjIO36UrJeNHk0H8ShiQgH-BAQEGR9Un6HasaJ0arMJyki82-QirJGtorNUWXGYLxXssGuE5U3-SxmiTv-sV4V2_hJplywy1LlBk3teJ_PQjnYPQNM43s8HxjuGIRDm
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6tuodygWV5dbfsGgmJU_qwHdc5ltKqXdoeoEjcIsexVQRKELSH3dP-hP2N_BJmkiargtBK7CWSk_Ejfn62Z74BeI2LvpNG-ECqBB89L4PECx4kJkwdHxghbcH2uVTTT_Lic1hpE5ItTMkPUR-40cgo5msa4HQg3b1lDSUTbNzgcWIlIyvyQ3LrTU4M3n2oGaQ4ds_SwEiIgPzQV7yNPd7dj7-_Lv0FNvexa7H4TB5BUhW71Dn52tluko69-oPR8V7_dQQPd9CUDcu-9BgOXHYMzVHlEe4JrN9-yX9d34xyBJqWvA9jYJytCx0CNi796VgSxwmPtOktzRpsQSp_ZPxyyXLPZnSYTLcFpP7KPhbstdsfjpksZTXR-lNYTcar0TTYeWoIrByofhAp7gyPQq-VkjbCdyp1PvJcWy-Ut27gUm4RjEotvRf9VKe4NTYIlhLDXSieQSPLM_cCWCo0N1pJ70yIKaGMlUpZp7kfYMK9FgRVM8V2x2JOzjS-xSX_Mo-p-uK6-lrwppb_XvJ3_FOyXbV6vBvHP2MuNUJQBEGY8av6M1Y7VZTJXL4lGUXXm0JGLXhe9pY6K4FTpsZNdgt40eZ3lCEeLmfjOnTyP5HOoTldLebxfLZ8fwoPOKngkAW-aEMD29S9RAy1Sc6KUfIbgykVAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIlEu0B9-AktxJSRO2d3ajuMct0tWXdquEBSpt8hxbBW1SiroHuipj9Bn7JMwk2zSbhFCgkukJGM7GXvsz8nMNwDvcNF30ggfSpXjYehlmHvBw9xEheOxEdLWbJ8ztfdVfjyOju9E8Tf8EN0HN7KMer4mAz8v_OCWNJQisHF_x4mUjILIH0qFFkOw6HNHIMVxdDbxRUKElIa-pW0c8sFy-eVl6TesuQxd67Vn8hRM-9SNy8lpf36R9-3lPULH_3mtNXiyAKZs1IykdXjgyg1YHbf54DbhZPdbdXN1Pa4QZlrKPYwnaXlSexCwtMmmY0kcpzvypbc0Z7BDcvij0JefrPJsSp-S6V8BOb-yLzV37fy7Y6YsWEez_gyOJunReC9c5GkIrYzVTpgo7gxPIq-VkjbBa6pwPvFcWy-Uty52BbcIRaWW3oudQhe4MTYIlXLDXSSew0pZle4lsEJobrSS3pkIa0IZK5WyTnMfY8XDAMK2lzK74DCnVBpnWcO-zDNSX9apL4D3nfx5w97xR8le2-nZwop_ZFxqBKAIgbDh7e42qp0UZUpXzUlG0c9NIZMAXjSDpWtK4ISpcYsdAK-7_C_PkI1m07Q7e_Uvhd7Co08fJtnBdLb_Gh5z8r-h8HvRgxXsUvcGAdRFvlXbyC9RZRO4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio%E2%80%90Coreactant%E2%80%90Enhanced+Electrochemiluminescence+Microscopy+of+Intracellular+Structure+and+Transport&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Ma&rft.au=Wu%2C+Shaojun&rft.au=Zhou%2C+Yang&rft.au=Hui%E2%80%90Fang+Wei&rft.date=2021-02-23&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=9&rft.spage=4907&rft.epage=4914&rft_id=info:doi/10.1002%2Fanie.202012171&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon