Bio‐Coreactant‐Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport
A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biom...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 9; pp. 4907 - 4914 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
23.02.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202012171 |
Cover
Loading…
Abstract | A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a “catalytic route”. Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time‐resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single‐cell studies, the bio‐coreactant‐enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR‐1.
Amine‐rich biomolecules as consumed coreactants drive electrochemiluminescence with Ru(bpy)32+, enabling bio‐coreactant‐enhanced single‐cell electrochemiluminescence microscopy. This allows the imaging of intracellular hierarchical structures without the use of multiple labels. Dynamic signals disclose the universal edge effect of cellular electroporation and enable the visualization of heterogeneous molecular transport. |
---|---|
AbstractList | A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a “catalytic route”. Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time‐resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single‐cell studies, the bio‐coreactant‐enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR‐1.
Amine‐rich biomolecules as consumed coreactants drive electrochemiluminescence with Ru(bpy)32+, enabling bio‐coreactant‐enhanced single‐cell electrochemiluminescence microscopy. This allows the imaging of intracellular hierarchical structures without the use of multiple labels. Dynamic signals disclose the universal edge effect of cellular electroporation and enable the visualization of heterogeneous molecular transport. A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a “catalytic route”. Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time‐resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single‐cell studies, the bio‐coreactant‐enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR‐1. A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a "catalytic route". Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time-resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single-cell studies, the bio-coreactant-enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR-1.A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a "catalytic route". Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time-resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single-cell studies, the bio-coreactant-enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR-1. A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy) 3 2+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a “catalytic route”. Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time‐resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy) 3 3+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single‐cell studies, the bio‐coreactant‐enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR‐1. A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy) as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a "catalytic route". Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time-resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy) in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single-cell studies, the bio-coreactant-enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR-1. |
Author | Wei, Hui‐Fang Zhu, Jun‐Jie Ma, Cheng Wu, Shaojun Zhou, Yang Zhang, Jianrong Lin, Yuehe Chen, Zixuan Zhu, Wenlei |
Author_xml | – sequence: 1 givenname: Cheng surname: Ma fullname: Ma, Cheng organization: Nanjing University – sequence: 2 givenname: Shaojun surname: Wu fullname: Wu, Shaojun organization: Nanjing University – sequence: 3 givenname: Yang surname: Zhou fullname: Zhou, Yang organization: Washington State University – sequence: 4 givenname: Hui‐Fang surname: Wei fullname: Wei, Hui‐Fang organization: Nanjing University – sequence: 5 givenname: Jianrong surname: Zhang fullname: Zhang, Jianrong organization: Nanjing University – sequence: 6 givenname: Zixuan surname: Chen fullname: Chen, Zixuan email: chenzixuan@nju.edu.cn organization: Nanjing University – sequence: 7 givenname: Jun‐Jie surname: Zhu fullname: Zhu, Jun‐Jie organization: Nanjing University – sequence: 8 givenname: Yuehe orcidid: 0000-0003-3791-7587 surname: Lin fullname: Lin, Yuehe email: yuehe.lin@wsu.edu organization: Washington State University – sequence: 9 givenname: Wenlei surname: Zhu fullname: Zhu, Wenlei email: wenlei.zhu@wsu.edu organization: Washington State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33188721$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctq3DAUhkVJaC7ttsti6CYbT3SxZWmZDtN2IJdFZm808hGjwZYmkkyYXR4hz9gnqcykKQRCVzrS-f6jw_-foSPnHSD0heAZwZheKmdhRjHFhJKGfECnpKakZE3DjnJdMVY2oiYn6CzGbeaFwPwjOmGMCNFQcoo2363__fQ89wGUTsqlfFm4jXIaumLRg07B6w0Mth8H6yBqyJ3ixurgo_a7feFNsXQpKA19P_YqFPcpjDqNAQrlumIVlIs7H9IndGxUH-Hzy3mOVj8Wq_mv8vru53J-dV3qquGklJyCorI2gvNKy_zGOzDSUKEN40ZDAx3VWMpKVMYw0omOMaGYkGtFoWbn6OIwdhf8wwgxtYON027KgR9jSyuOG45ZJTP67Q269WNweblMCVkTQSjO1NcXalwP0LW7YAcV9u1fCzMwOwCTJTGAeUUIbqeM2imj9jWjLKjeCLRNKlk_2Wj792XyIHu0Pez_80l7dbtc_NP-AVSVqPU |
CitedBy_id | crossref_primary_10_1039_D4NR04423A crossref_primary_10_1002_anie_202421658 crossref_primary_10_1021_acs_analchem_3c01822 crossref_primary_10_1021_jacs_4c07566 crossref_primary_10_1016_j_bios_2022_114629 crossref_primary_10_1002_ange_202314588 crossref_primary_10_1039_D3SC01329D crossref_primary_10_1021_acs_analchem_2c04297 crossref_primary_10_1002_anie_202215078 crossref_primary_10_1002_anie_202304625 crossref_primary_10_1016_j_trac_2024_118103 crossref_primary_10_1021_acs_analchem_1c04006 crossref_primary_10_1002_anie_202101467 crossref_primary_10_1021_acs_analchem_3c01718 crossref_primary_10_1021_acs_analchem_1c00602 crossref_primary_10_1021_acs_analchem_3c00869 crossref_primary_10_1002_anie_202117401 crossref_primary_10_1007_s44211_025_00723_x crossref_primary_10_1016_j_bios_2022_114699 crossref_primary_10_1002_anie_202407588 crossref_primary_10_1016_j_electacta_2022_140240 crossref_primary_10_1021_acs_analchem_1c05065 crossref_primary_10_1016_j_bioelechem_2022_108192 crossref_primary_10_1007_s40242_022_2036_7 crossref_primary_10_1039_D2AN00709F crossref_primary_10_1002_cptc_202200124 crossref_primary_10_1016_j_coelec_2022_101096 crossref_primary_10_1016_j_snb_2022_132288 crossref_primary_10_1016_j_snb_2024_136679 crossref_primary_10_1002_anie_202218574 crossref_primary_10_1039_D2AN00352J crossref_primary_10_1021_cbmi_2c00007 crossref_primary_10_3389_fchem_2021_688358 crossref_primary_10_1002_cbic_202400389 crossref_primary_10_1021_acs_analchem_2c04425 crossref_primary_10_1039_D2SC01317G crossref_primary_10_1002_cjoc_202200134 crossref_primary_10_2139_ssrn_4121318 crossref_primary_10_1002_open_202200113 crossref_primary_10_1002_cjoc_202100330 crossref_primary_10_1021_jacs_1c00001 crossref_primary_10_1021_acs_analchem_3c02183 crossref_primary_10_34133_research_0257 crossref_primary_10_1039_D2AN01159J crossref_primary_10_1016_j_jelechem_2022_116569 crossref_primary_10_1016_j_snb_2023_133885 crossref_primary_10_1016_j_aca_2023_341920 crossref_primary_10_1039_D0SC07085H crossref_primary_10_1002_ange_202421658 crossref_primary_10_1021_acs_analchem_2c02479 crossref_primary_10_1021_acs_analchem_4c02100 crossref_primary_10_1002_anie_202314588 crossref_primary_10_1021_acsnano_3c05619 crossref_primary_10_1021_jacs_1c07827 crossref_primary_10_1016_j_electacta_2023_142507 crossref_primary_10_1021_acs_analchem_2c04663 crossref_primary_10_1002_ange_202215078 crossref_primary_10_1039_D2SC03868D crossref_primary_10_1002_ange_202105867 crossref_primary_10_1021_jacs_3c04250 crossref_primary_10_1002_cjoc_202100685 crossref_primary_10_1016_j_talo_2022_100088 crossref_primary_10_1016_j_electacta_2024_144256 crossref_primary_10_1002_ange_202117401 crossref_primary_10_1002_agt2_417 crossref_primary_10_1039_D4FD00137K crossref_primary_10_1002_celc_202200236 crossref_primary_10_1021_acsami_4c13803 crossref_primary_10_1021_acs_analchem_3c02960 crossref_primary_10_1021_acssensors_3c01878 crossref_primary_10_1002_adfm_202200863 crossref_primary_10_1039_D2CC04597D crossref_primary_10_1002_ange_202218574 crossref_primary_10_1002_anie_202105867 crossref_primary_10_1002_anie_202216525 crossref_primary_10_1021_acs_analchem_1c04608 crossref_primary_10_1021_jacs_1c06673 crossref_primary_10_1021_cbmi_3c00066 crossref_primary_10_1002_ange_202407588 crossref_primary_10_1002_ange_202304625 crossref_primary_10_1002_smll_202406374 crossref_primary_10_1021_acs_analchem_2c05698 crossref_primary_10_1021_acs_analchem_3c02726 crossref_primary_10_1021_acs_analchem_1c02675 crossref_primary_10_1016_j_coelec_2023_101270 crossref_primary_10_3390_bios13020200 crossref_primary_10_1039_D2CC06499E crossref_primary_10_3389_fchem_2022_872582 crossref_primary_10_1002_advs_202411956 crossref_primary_10_1039_D3SC05983A crossref_primary_10_1021_acs_analchem_2c01480 crossref_primary_10_1039_D4AN00470A crossref_primary_10_1021_acsnano_2c11934 crossref_primary_10_3390_chemosensors11100538 crossref_primary_10_1002_ange_202308950 crossref_primary_10_1016_j_snb_2024_136597 crossref_primary_10_1021_acssensors_2c01195 crossref_primary_10_1021_acs_nanolett_4c04487 crossref_primary_10_1021_jacs_3c12913 crossref_primary_10_1016_j_bios_2023_115741 crossref_primary_10_1016_j_jelechem_2021_115891 crossref_primary_10_1016_j_esci_2022_10_004 crossref_primary_10_1016_j_cej_2024_150000 crossref_primary_10_1002_elan_202100341 crossref_primary_10_1021_acs_analchem_4c03868 crossref_primary_10_1016_j_coelec_2022_101034 crossref_primary_10_1021_jacs_4c17749 crossref_primary_10_1021_acs_analchem_1c04593 crossref_primary_10_1016_j_jelechem_2022_116594 crossref_primary_10_1016_j_jelechem_2023_117220 crossref_primary_10_1016_j_coelec_2022_101036 crossref_primary_10_1002_ange_202101467 crossref_primary_10_1002_ange_202216525 crossref_primary_10_1002_anse_202100037 crossref_primary_10_1002_anie_202308950 |
Cites_doi | 10.1038/nchem.961 10.1002/ange.201800706 10.1073/pnas.0708669104 10.1038/ncomms12109 10.1021/jacs.9b03007 10.1039/C8SC02251H 10.1038/nmeth.1841 10.1039/C1CS15265C 10.1002/anie.202002323 10.1021/ja0296529 10.1038/s41592-020-0793-0 10.1002/anie.201800706 10.1021/jp022085r 10.1016/S0302-4598(97)00023-8 10.1021/ja5112628 10.1002/chem.201501342 10.1016/j.cell.2014.02.010 10.1021/ja901876z 10.1021/cr068083a 10.1038/nrm2184 10.1002/anie.201911190 10.12703/P7-48 10.1039/C5CS00657K 10.1021/ar700245e 10.1021/jacs.7b09260 10.1201/9780203027011 10.1016/S0006-3495(91)82054-9 10.1038/nnano.2017.3 10.1021/acs.analchem.6b01073 10.1016/S0958-1669(02)00003-4 10.1021/ja00140a006 10.1021/ac00133a017 10.1002/ange.202004634 10.1021/acs.nanolett.0c01129 10.1042/BJ20111451 10.1126/science.1192033 10.1002/ange.201911190 10.1021/acs.analchem.8b04778 10.1016/j.medengphy.2015.08.002 10.1073/pnas.1804548115 10.1038/s41467-017-01614-0 10.1016/j.bios.2013.05.041 10.1073/pnas.95.18.10356 10.1021/cr068062g 10.1021/ac034974w 10.1016/S0006-3495(01)75851-1 10.1073/pnas.0307588100 10.1038/ncomms5494 10.1002/anie.202004634 10.1038/s41467-020-16476-2 10.1021/acs.analchem.6b00150 10.1021/ja027532v 10.1039/C4SC00312H 10.1021/jacs.8b08080 10.1126/sciadv.1700171 10.1038/352638a0 10.1073/pnas.1203570109 10.1002/jcb.2400510407 10.1016/j.tibs.2010.07.007 10.1002/ange.202002323 10.1021/jp002880 10.1021/acs.chemrev.6b00638 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202012171 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 4914 |
ExternalDocumentID | 33188721 10_1002_anie_202012171 ANIE202012171 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Innovative Research Group Project of the National Natural Science Foundation of China funderid: 21974065, 21834004 and 21904063 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20190279,BK20200059 – fundername: Nanjing University funderid: ZYJH004 – fundername: Fundamental Research Funds for the Central Universities funderid: 020514380173 and 021314380151 – fundername: Washington State University funderid: Start-up Fund |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4761-962ea295f8664c94766def9f28cf36fce7ed2c099484ff31d8d338a389ba2e53 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:11:42 EDT 2025 Sun Jul 13 05:16:57 EDT 2025 Thu Apr 03 07:13:31 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Tue Jul 01 01:17:51 EDT 2025 Wed Jan 22 16:31:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | electrochemiluminescence bioelectrochemistry microscopy electrochemistry single-cell studies |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-962ea295f8664c94766def9f28cf36fce7ed2c099484ff31d8d338a389ba2e53 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3791-7587 |
PMID | 33188721 |
PQID | 2489518120 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2460760349 proquest_journals_2489518120 pubmed_primary_33188721 crossref_primary_10_1002_anie_202012171 crossref_citationtrail_10_1002_anie_202012171 wiley_primary_10_1002_anie_202012171_ANIE202012171 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 23, 2021 |
PublicationDateYYYYMMDD | 2021-02-23 |
PublicationDate_xml | – month: 02 year: 2021 text: February 23, 2021 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1991; 352 2007; 104 2019; 91 2015; 37 2017; 8 2012; 441 2017; 3 2020; 20 1997; 43 2020 2020; 59 132 2020; 17 2008; 108 2003; 14 1991; 60 2020; 11 2017; 117 2001; 105 2004; 76 2018; 9 2014; 5 2015; 137 2018 2018; 57 130 2013; 50 2007; 8 2003; 125 1998; 95 2016; 45 2016; 88 2004; 101 2010; 329 2018; 140 1995; 117 2004 2009; 131 2002 2011; 36 2019; 141 2011; 3 2015; 7 2012; 109 2017; 139 1987; 59 2014; 157 2001; 81 2016; 7 2003; 107 1993; 51 2002; 124 2018; 115 2017; 12 2015; 21 2020 2020 2008; 41 2012; 41 2012; 9 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_2 e_1_2_6_72_1 e_1_2_6_70_2 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_34_3 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_38_2 e_1_2_6_76_2 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_43_1 e_1_2_6_64_2 e_1_2_6_20_1 e_1_2_6_41_2 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 Ju H. (e_1_2_6_31_2) 2020 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_66_1 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_75_2 e_1_2_6_54_1 e_1_2_6_71_2 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_18_3 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_12_1 e_1_2_6_31_3 e_1_2_6_16_2 e_1_2_6_16_3 e_1_2_6_39_1 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_42_1 e_1_2_6_63_2 e_1_2_6_65_1 e_1_2_6_21_1 Alberts B. (e_1_2_6_48_1) 2002 e_1_2_6_40_2 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_44_2 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_67_2 e_1_2_6_69_1 e_1_2_6_25_2 |
References_xml | – volume: 104 start-page: 17255 year: 2007 end-page: 17260 publication-title: Proc. Natl. Acad. Sci. USA – volume: 36 start-page: 30 year: 2011 end-page: 38 publication-title: Trends Biochem. Sci. – volume: 11 start-page: 2668 year: 2020 publication-title: Nat. Commun. – volume: 51 start-page: 426 year: 1993 end-page: 435 publication-title: J. Cell. Biochem. – volume: 141 start-page: 10294 year: 2019 end-page: 10299 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 2061 year: 2012 end-page: 2071 publication-title: Chem. Soc. Rev. – volume: 45 start-page: 1211 year: 2016 end-page: 1224 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 12109 year: 2016 publication-title: Nat. Commun. – volume: 21 start-page: 12640 year: 2015 end-page: 12645 publication-title: Chem. Eur. J. – volume: 131 start-page: 6088 year: 2009 end-page: 6089 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 210 year: 2001 end-page: 216 publication-title: J. Phys. Chem. B – volume: 91 start-page: 1121 year: 2019 end-page: 1125 publication-title: Anal. Chem. – volume: 137 start-page: 1903 year: 2015 end-page: 1908 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1498 year: 2017 publication-title: Nat. Commun. – volume: 88 start-page: 2006 year: 2016 end-page: 2009 publication-title: Anal. Chem. – volume: 329 start-page: 830 year: 2010 end-page: 834 publication-title: Science – volume: 107 start-page: 372 year: 2003 end-page: 378 publication-title: J. Phys. Chem. B – volume: 5 start-page: 2568 year: 2014 end-page: 2572 publication-title: Chem. Sci. – volume: 5 start-page: 4494 year: 2014 publication-title: Nat. Commun. – volume: 88 start-page: 4609 year: 2016 end-page: 4612 publication-title: Anal. Chem. – year: 2004 – volume: 3 start-page: 249 year: 2011 end-page: 255 publication-title: Nat. Chem. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 43 start-page: 285 year: 1997 end-page: 291 publication-title: Bioelectrochem. Bioenerg. – volume: 14 start-page: 29 year: 2003 end-page: 34 publication-title: Curr. Opin. Biotechnol. – volume: 59 132 start-page: 15157 15269 year: 2020 2020 end-page: 15160 15272 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 124 start-page: 14478 year: 2002 end-page: 14485 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 2585 year: 2008 end-page: 2621 publication-title: Chem. Rev. – volume: 57 130 start-page: 4010 4074 year: 2018 2018 end-page: 4014 4078 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 449 457 year: 2020 2020 end-page: 456 464 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 4342 year: 2017 end-page: 4375 publication-title: Chem. Rev. – volume: 59 132 start-page: 10416 10502 year: 2020 2020 end-page: 10420 10506 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 108 start-page: 2506 year: 2008 end-page: 2553 publication-title: Chem. Rev. – volume: 352 start-page: 638 year: 1991 end-page: 640 publication-title: Nature – volume: 95 start-page: 10356 year: 1998 end-page: 10360 publication-title: Proc. Natl. Acad. Sci. USA – volume: 101 start-page: 1554 year: 2004 end-page: 1559 publication-title: Proc. Natl. Acad. Sci. USA – year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 441 start-page: 523 year: 2012 end-page: 540 publication-title: Biochem. J. – volume: 41 start-page: 1075 year: 2008 end-page: 1083 publication-title: Acc. Chem. Res. – volume: 157 start-page: 8 year: 2014 end-page: 11 publication-title: Cell – volume: 139 start-page: 16830 year: 2017 end-page: 16837 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 14753 year: 2018 end-page: 14760 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 460 year: 2017 end-page: 466 publication-title: Nat. Nanotechnol. – volume: 60 start-page: 297 year: 1991 end-page: 306 publication-title: Biophys. J. – volume: 7 start-page: 48 year: 2015 publication-title: F1000prime reports – volume: 17 start-page: 524 year: 2020 end-page: 530 publication-title: Nat. Methods – volume: 20 start-page: 5008 year: 2020 end-page: 5016 publication-title: Nano Lett. – volume: 76 start-page: 357 year: 2004 end-page: 364 publication-title: Anal. Chem. – year: 2002 – volume: 117 start-page: 8933 year: 1995 end-page: 8938 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 11540 year: 2012 end-page: 11545 publication-title: Proc. Natl. Acad. Sci. USA – volume: 125 start-page: 5213 year: 2003 end-page: 5218 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 574 year: 2007 end-page: 585 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 81 start-page: 2010 year: 2001 end-page: 2019 publication-title: Biophys. J. – volume: 9 start-page: 6167 year: 2018 end-page: 6175 publication-title: Chem. Sci. – volume: 9 start-page: 185 year: 2012 end-page: 188 publication-title: Nat. Methods – volume: 50 start-page: 294 year: 2013 end-page: 299 publication-title: Biosens. Bioelectron. – volume: 115 start-page: 10275 year: 2018 end-page: 10280 publication-title: Proc. Natl. Acad. Sci. USA – volume: 37 start-page: 1015 year: 2015 end-page: 1019 publication-title: Med. Eng. Phys. – volume: 59 start-page: 865 year: 1987 end-page: 868 publication-title: Anal. Chem. – ident: e_1_2_6_70_2 doi: 10.1038/nchem.961 – ident: e_1_2_6_18_3 doi: 10.1002/ange.201800706 – ident: e_1_2_6_49_1 doi: 10.1073/pnas.0708669104 – ident: e_1_2_6_56_2 doi: 10.1038/ncomms12109 – ident: e_1_2_6_14_1 – ident: e_1_2_6_30_2 doi: 10.1021/jacs.9b03007 – ident: e_1_2_6_20_1 doi: 10.1039/C8SC02251H – ident: e_1_2_6_73_1 doi: 10.1038/nmeth.1841 – ident: e_1_2_6_36_1 – ident: e_1_2_6_4_1 – ident: e_1_2_6_5_2 doi: 10.1039/C1CS15265C – ident: e_1_2_6_34_2 doi: 10.1002/anie.202002323 – ident: e_1_2_6_38_2 doi: 10.1021/ja0296529 – ident: e_1_2_6_72_1 doi: 10.1038/s41592-020-0793-0 – ident: e_1_2_6_18_2 doi: 10.1002/anie.201800706 – ident: e_1_2_6_44_2 doi: 10.1021/jp022085r – ident: e_1_2_6_68_2 doi: 10.1016/S0302-4598(97)00023-8 – ident: e_1_2_6_55_1 – ident: e_1_2_6_58_2 doi: 10.1021/ja5112628 – ident: e_1_2_6_66_1 – ident: e_1_2_6_69_1 – ident: e_1_2_6_61_1 – ident: e_1_2_6_22_2 doi: 10.1002/chem.201501342 – ident: e_1_2_6_3_2 doi: 10.1016/j.cell.2014.02.010 – ident: e_1_2_6_9_1 – ident: e_1_2_6_23_2 doi: 10.1021/ja901876z – ident: e_1_2_6_13_1 doi: 10.1021/cr068083a – ident: e_1_2_6_53_1 doi: 10.1038/nrm2184 – ident: e_1_2_6_25_1 doi: 10.1002/anie.201911190 – ident: e_1_2_6_52_1 doi: 10.12703/P7-48 – ident: e_1_2_6_7_1 doi: 10.1039/C5CS00657K – ident: e_1_2_6_45_2 doi: 10.1021/ar700245e – ident: e_1_2_6_28_2 doi: 10.1021/jacs.7b09260 – ident: e_1_2_6_37_2 doi: 10.1201/9780203027011 – ident: e_1_2_6_64_2 doi: 10.1016/S0006-3495(91)82054-9 – ident: e_1_2_6_1_1 – ident: e_1_2_6_12_1 doi: 10.1038/nnano.2017.3 – ident: e_1_2_6_31_3 – ident: e_1_2_6_35_2 doi: 10.1021/acs.analchem.6b01073 – ident: e_1_2_6_63_2 doi: 10.1016/S0958-1669(02)00003-4 – volume-title: The Chemical Components of a Cell, Molecular Biology of the Cell year: 2002 ident: e_1_2_6_48_1 – ident: e_1_2_6_51_1 doi: 10.1021/ja00140a006 – ident: e_1_2_6_46_1 doi: 10.1021/ac00133a017 – ident: e_1_2_6_16_3 doi: 10.1002/ange.202004634 – ident: e_1_2_6_19_2 doi: 10.1021/acs.nanolett.0c01129 – ident: e_1_2_6_74_1 – ident: e_1_2_6_57_2 doi: 10.1042/BJ20111451 – ident: e_1_2_6_8_1 doi: 10.1126/science.1192033 – year: 2020 ident: e_1_2_6_31_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_6_39_1 – ident: e_1_2_6_25_2 doi: 10.1002/ange.201911190 – ident: e_1_2_6_26_1 doi: 10.1021/acs.analchem.8b04778 – ident: e_1_2_6_67_2 doi: 10.1016/j.medengphy.2015.08.002 – ident: e_1_2_6_17_1 – ident: e_1_2_6_6_2 doi: 10.1073/pnas.1804548115 – ident: e_1_2_6_50_1 doi: 10.1038/s41467-017-01614-0 – ident: e_1_2_6_47_1 doi: 10.1016/j.bios.2013.05.041 – ident: e_1_2_6_65_1 doi: 10.1073/pnas.95.18.10356 – ident: e_1_2_6_11_2 doi: 10.1021/cr068062g – ident: e_1_2_6_41_2 doi: 10.1021/ac034974w – ident: e_1_2_6_75_2 doi: 10.1016/S0006-3495(01)75851-1 – ident: e_1_2_6_27_1 – ident: e_1_2_6_71_2 doi: 10.1073/pnas.0307588100 – ident: e_1_2_6_76_2 doi: 10.1038/ncomms5494 – ident: e_1_2_6_16_2 doi: 10.1002/anie.202004634 – ident: e_1_2_6_21_1 – ident: e_1_2_6_32_1 – ident: e_1_2_6_15_2 doi: 10.1038/s41467-020-16476-2 – ident: e_1_2_6_33_2 doi: 10.1021/acs.analchem.6b00150 – ident: e_1_2_6_42_1 doi: 10.1021/ja027532v – ident: e_1_2_6_24_2 doi: 10.1039/C4SC00312H – ident: e_1_2_6_29_2 doi: 10.1021/jacs.8b08080 – ident: e_1_2_6_60_1 doi: 10.1126/sciadv.1700171 – ident: e_1_2_6_54_1 doi: 10.1038/352638a0 – ident: e_1_2_6_10_2 doi: 10.1073/pnas.1203570109 – ident: e_1_2_6_43_1 – ident: e_1_2_6_62_2 doi: 10.1002/jcb.2400510407 – ident: e_1_2_6_59_1 doi: 10.1016/j.tibs.2010.07.007 – ident: e_1_2_6_34_3 doi: 10.1002/ange.202002323 – ident: e_1_2_6_40_2 doi: 10.1021/jp002880 – ident: e_1_2_6_2_2 doi: 10.1021/acs.chemrev.6b00638 |
SSID | ssj0028806 |
Score | 2.6254377 |
Snippet | A bio‐coreactant‐enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy... A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4907 |
SubjectTerms | Actin Animals Autophagy bioelectrochemistry Biomolecules Cell membranes Cytoskeleton Damage detection DNA damage DNA Damage - drug effects Edge effect Electrochemical Techniques Electrochemiluminescence Electrochemistry Electrodes Electroporation HeLa Cells Humans Image enhancement Image processing Intracellular Liver - microbiology Liver - pathology Luminescent Measurements Mice Microscopy Microscopy, Atomic Force Microscopy, Fluorescence - methods Organometallic Compounds - chemistry Organometallic Compounds - pharmacology Phagocytosis Reactive Oxygen Species - metabolism Shewanella - isolation & purification Single-Cell Analysis single-cell studies |
Title | Bio‐Coreactant‐Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202012171 https://www.ncbi.nlm.nih.gov/pubmed/33188721 https://www.proquest.com/docview/2489518120 https://www.proquest.com/docview/2460760349 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwL4WCjITEKV1sx3GOpSoCJHqAInGLHMdWEShBtD3AiU_gG_kSZpImUBBCgkskJ-MlXp_tmTeEHMKib4XmzhMyhkfLCS92nHmx9hPLAs2Fydk--_L0Wpzf-DefrPgLfojqwA1HRj5f4wDX8aj5QRqKFtiwv2NISpYbkaPCFqKiy4o_ikHnLMyLOPfQC33J2thizdnos6vSN6g5i1zzpedkmeiy0IXGyV1jMo4b5vkLn-N__mqFLE1xKe0UHWmVzNl0jSx0S3dw62R4fJu9vbx2M0CZBl0PQ6CXDnMFAtornOkYFIfZDlXpDU4Z9AL1_dDy5Ylmjp7hSTJeFaDuK73KqWsnj5bqNKEVy_oGGZz0Bt1Tb-qmwTMikG0vlMxqFvpOSSlMCO9kYl3omDKOS2dsYBNmAIkKJZzj7UQlsC_WgJRizazPN8l8mqV2m9CEK6aVFM5qH1ICGSOkNFYxF0DCrRrxylaKzJTCHD1p3EcF-TKLsPqiqvpq5KiSfyjIO36UrJeNHk0H8ShiQgH-BAQEGR9Un6HasaJ0arMJyki82-QirJGtorNUWXGYLxXssGuE5U3-SxmiTv-sV4V2_hJplywy1LlBk3teJ_PQjnYPQNM43s8HxjuGIRDm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6tuodygWV5dbfsGgmJU_qwHdc5ltKqXdoeoEjcIsexVQRKELSH3dP-hP2N_BJmkiargtBK7CWSk_Ejfn62Z74BeI2LvpNG-ECqBB89L4PECx4kJkwdHxghbcH2uVTTT_Lic1hpE5ItTMkPUR-40cgo5msa4HQg3b1lDSUTbNzgcWIlIyvyQ3LrTU4M3n2oGaQ4ds_SwEiIgPzQV7yNPd7dj7-_Lv0FNvexa7H4TB5BUhW71Dn52tluko69-oPR8V7_dQQPd9CUDcu-9BgOXHYMzVHlEe4JrN9-yX9d34xyBJqWvA9jYJytCx0CNi796VgSxwmPtOktzRpsQSp_ZPxyyXLPZnSYTLcFpP7KPhbstdsfjpksZTXR-lNYTcar0TTYeWoIrByofhAp7gyPQq-VkjbCdyp1PvJcWy-Ut27gUm4RjEotvRf9VKe4NTYIlhLDXSieQSPLM_cCWCo0N1pJ70yIKaGMlUpZp7kfYMK9FgRVM8V2x2JOzjS-xSX_Mo-p-uK6-lrwppb_XvJ3_FOyXbV6vBvHP2MuNUJQBEGY8av6M1Y7VZTJXL4lGUXXm0JGLXhe9pY6K4FTpsZNdgt40eZ3lCEeLmfjOnTyP5HOoTldLebxfLZ8fwoPOKngkAW-aEMD29S9RAy1Sc6KUfIbgykVAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIlEu0B9-AktxJSRO2d3ajuMct0tWXdquEBSpt8hxbBW1SiroHuipj9Bn7JMwk2zSbhFCgkukJGM7GXvsz8nMNwDvcNF30ggfSpXjYehlmHvBw9xEheOxEdLWbJ8ztfdVfjyOju9E8Tf8EN0HN7KMer4mAz8v_OCWNJQisHF_x4mUjILIH0qFFkOw6HNHIMVxdDbxRUKElIa-pW0c8sFy-eVl6TesuQxd67Vn8hRM-9SNy8lpf36R9-3lPULH_3mtNXiyAKZs1IykdXjgyg1YHbf54DbhZPdbdXN1Pa4QZlrKPYwnaXlSexCwtMmmY0kcpzvypbc0Z7BDcvij0JefrPJsSp-S6V8BOb-yLzV37fy7Y6YsWEez_gyOJunReC9c5GkIrYzVTpgo7gxPIq-VkjbBa6pwPvFcWy-Uty52BbcIRaWW3oudQhe4MTYIlXLDXSSew0pZle4lsEJobrSS3pkIa0IZK5WyTnMfY8XDAMK2lzK74DCnVBpnWcO-zDNSX9apL4D3nfx5w97xR8le2-nZwop_ZFxqBKAIgbDh7e42qp0UZUpXzUlG0c9NIZMAXjSDpWtK4ISpcYsdAK-7_C_PkI1m07Q7e_Uvhd7Co08fJtnBdLb_Gh5z8r-h8HvRgxXsUvcGAdRFvlXbyC9RZRO4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio%E2%80%90Coreactant%E2%80%90Enhanced+Electrochemiluminescence+Microscopy+of+Intracellular+Structure+and+Transport&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Ma&rft.au=Wu%2C+Shaojun&rft.au=Zhou%2C+Yang&rft.au=Hui%E2%80%90Fang+Wei&rft.date=2021-02-23&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=9&rft.spage=4907&rft.epage=4914&rft_id=info:doi/10.1002%2Fanie.202012171&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |