A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid

Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still un...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 15; pp. e1806781 - n/a
Main Authors Li, Si‐Jia, Zhou, Yi‐Tong, Kang, Xia, Liu, Dong‐Xue, Gu, Lin, Zhang, Qing‐Hua, Yan, Jun‐Min, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono‐/bi‐metallic nanoparticles supported on a NH2‐N‐rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2‐N‐rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts. A AuPd/NH2‐N‐rGO catalyst shows supreme catalytic performance for the decomposition of formic acid at room temperature, with a turnover frequency (TOF) of 4445.6 h−1. Developments in the experiments and simulations of high‐performance catalysts may promote the practical application of formic acid as a promising hydrogen storage material.
AbstractList Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono‐/bi‐metallic nanoparticles supported on a NH 2 ‐N‐rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH 2 ‐N‐rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts.
Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono‐/bi‐metallic nanoparticles supported on a NH2‐N‐rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2‐N‐rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts.
Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel-cell-based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono-/bi-metallic nanoparticles supported on a NH2 -N-rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2 -N-rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts.Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel-cell-based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono-/bi-metallic nanoparticles supported on a NH2 -N-rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2 -N-rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts.
Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono‐/bi‐metallic nanoparticles supported on a NH2‐N‐rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2‐N‐rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts. A AuPd/NH2‐N‐rGO catalyst shows supreme catalytic performance for the decomposition of formic acid at room temperature, with a turnover frequency (TOF) of 4445.6 h−1. Developments in the experiments and simulations of high‐performance catalysts may promote the practical application of formic acid as a promising hydrogen storage material.
Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel-cell-based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono-/bi-metallic nanoparticles supported on a NH -N-rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH -N-rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts.
Author Li, Si‐Jia
Gu, Lin
Zhou, Yi‐Tong
Yan, Jun‐Min
Kang, Xia
Liu, Dong‐Xue
Jiang, Qing
Zhang, Qing‐Hua
Author_xml – sequence: 1
  givenname: Si‐Jia
  surname: Li
  fullname: Li, Si‐Jia
  organization: Jilin University
– sequence: 2
  givenname: Yi‐Tong
  surname: Zhou
  fullname: Zhou, Yi‐Tong
  organization: Jilin University
– sequence: 3
  givenname: Xia
  surname: Kang
  fullname: Kang, Xia
  organization: Jilin University
– sequence: 4
  givenname: Dong‐Xue
  surname: Liu
  fullname: Liu, Dong‐Xue
  organization: Jilin University
– sequence: 5
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Qing‐Hua
  surname: Zhang
  fullname: Zhang, Qing‐Hua
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Jun‐Min
  orcidid: 0000-0001-8511-3810
  surname: Yan
  fullname: Yan, Jun‐Min
  email: junminyan@jlu.edu.cn
  organization: Jilin University
– sequence: 8
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
  email: jiangq@jlu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30803061$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAURi1URKeFLUtkiQ2bDNfxI_EymulLKqIqsLY8jl1cJfFge6jm3zfJtCBVQqws2edc-X7fCToawmARek9gSQDKz7rt9bIEUoOoavIKLQgvScFA8iO0AEl5IQWrj9FJSvcAIAWIN-iYQg0UBFmg3OBvvt92FuuhxWfOWZP9b4tvoh-Mn-5diFjjW519GHSH1zb5uwEHhy9ttjHc2cGGXcIrnXW3TznNwtr-3Lfz4-xN-HmIvTe4Mb59i1473SX77uk8RT_Oz76vLovrrxdXq-a6MKwSpOCbsmWyrB0pTWscrUFryUxrN9JxSivKK8nbijOyIUbURDMjyJgDkVzYylT0FH06zN3G8GtnU1a9T8Z2nZ7_rEpSC8IJSDaiH1-g92EXx4VHqgROoZIwDfzwRO02vW3VNvpex716znME2AEwMaQUrVPG5zmCHLXvFAE11aam2tSf2kZt-UJ7nvxPQR6EB9_Z_X9o1ay_NH_dR0_8qOs
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215302
crossref_primary_10_1016_j_ijhydene_2020_11_260
crossref_primary_10_1039_C9TA07721A
crossref_primary_10_1039_D3NR05207A
crossref_primary_10_1002_cctc_202400013
crossref_primary_10_1002_adfm_202203418
crossref_primary_10_1039_C9QI01375J
crossref_primary_10_1016_j_ijhydene_2020_03_016
crossref_primary_10_1021_acscatal_2c03893
crossref_primary_10_1021_acscatal_2c06369
crossref_primary_10_1021_acsami_9b16981
crossref_primary_10_1016_j_mtchem_2022_101001
crossref_primary_10_1039_D1TA06059G
crossref_primary_10_1016_j_jcis_2023_11_040
crossref_primary_10_1021_acsami_2c00343
crossref_primary_10_1002_smll_202204647
crossref_primary_10_1021_acsami_3c03684
crossref_primary_10_1039_D3SC05851D
crossref_primary_10_1016_j_jcat_2021_10_007
crossref_primary_10_1038_s41598_020_75369_y
crossref_primary_10_1002_anie_202409001
crossref_primary_10_1021_acscatal_4c02491
crossref_primary_10_1016_j_jcis_2023_12_085
crossref_primary_10_1021_acsaem_1c00520
crossref_primary_10_1038_s41467_023_36142_7
crossref_primary_10_3390_nano11113028
crossref_primary_10_1016_j_ijhydene_2022_06_190
crossref_primary_10_1088_1361_6528_ab32fd
crossref_primary_10_1016_j_xcrp_2023_101248
crossref_primary_10_1016_j_chemosphere_2021_130229
crossref_primary_10_1016_j_jcat_2022_04_021
crossref_primary_10_1021_acscatal_4c00959
crossref_primary_10_1016_j_fuel_2023_128333
crossref_primary_10_3390_en17010260
crossref_primary_10_3390_molecules24183290
crossref_primary_10_1039_D1TA05472D
crossref_primary_10_1021_acsanm_1c02204
crossref_primary_10_1007_s11708_023_0895_3
crossref_primary_10_1021_acs_energyfuels_4c05960
crossref_primary_10_1007_s12274_019_2579_1
crossref_primary_10_1051_epjap_2023220271
crossref_primary_10_1021_acs_iecr_1c03970
crossref_primary_10_3390_catal12050563
crossref_primary_10_1016_j_mtchem_2021_100467
crossref_primary_10_1039_D3EE03761D
crossref_primary_10_1021_acs_chemrev_1c00493
crossref_primary_10_1134_S2070050424700181
crossref_primary_10_1021_acs_inorgchem_2c01640
crossref_primary_10_1039_D0CS00515K
crossref_primary_10_1021_acssuschemeng_1c08630
crossref_primary_10_1007_s11467_019_0923_2
crossref_primary_10_1002_anie_202423661
crossref_primary_10_1016_j_ijhydene_2020_11_058
crossref_primary_10_3390_catal13081168
crossref_primary_10_1016_j_jcat_2020_06_033
crossref_primary_10_1016_j_renene_2021_03_100
crossref_primary_10_1039_C9TA10196A
crossref_primary_10_1002_cey2_269
crossref_primary_10_1021_acsami_4c13440
crossref_primary_10_1016_j_jhazmat_2022_130677
crossref_primary_10_1021_acsami_2c02055
crossref_primary_10_1039_C9NR09660D
crossref_primary_10_1021_acs_iecr_3c00473
crossref_primary_10_1002_ange_202409001
crossref_primary_10_1002_ejoc_202201006
crossref_primary_10_1063_5_0152761
crossref_primary_10_1016_j_jcis_2021_06_160
crossref_primary_10_1016_j_rechem_2022_100554
crossref_primary_10_1002_ange_202423661
crossref_primary_10_1016_j_jcis_2024_06_216
crossref_primary_10_1039_C9TA06987A
crossref_primary_10_1021_acs_jpclett_2c02149
crossref_primary_10_1038_s41467_024_52517_w
crossref_primary_10_1002_anie_202008962
crossref_primary_10_1016_j_cej_2023_144640
crossref_primary_10_1016_j_cjche_2020_07_067
crossref_primary_10_1002_anie_202004125
crossref_primary_10_1039_D4EY00281D
crossref_primary_10_1002_smll_202407578
crossref_primary_10_1039_C9NR06080D
crossref_primary_10_1002_adma_202416126
crossref_primary_10_1016_j_jcat_2022_05_021
crossref_primary_10_1021_acsami_4c10391
crossref_primary_10_3390_catal12030325
crossref_primary_10_1039_C9NR07144J
crossref_primary_10_1016_j_fuel_2024_132751
crossref_primary_10_1021_acscatal_2c04137
crossref_primary_10_1021_acssuschemeng_2c06538
crossref_primary_10_3390_catal15040305
crossref_primary_10_1039_D2NJ04891D
crossref_primary_10_1039_D1GC02012A
crossref_primary_10_1016_j_jcis_2022_10_048
crossref_primary_10_1021_acsomega_2c05988
crossref_primary_10_1016_j_apsusc_2024_160799
crossref_primary_10_1039_C9CY02464F
crossref_primary_10_1016_j_fuel_2023_130459
crossref_primary_10_1002_adma_202403664
crossref_primary_10_1039_D0NJ06124G
crossref_primary_10_1021_acssuschemeng_3c06903
crossref_primary_10_18412_1816_0387_2023_5_55_66
crossref_primary_10_1039_D3NJ01188G
crossref_primary_10_1002_cctc_202300418
crossref_primary_10_1021_acsami_2c05099
crossref_primary_10_1016_j_jelechem_2020_114023
crossref_primary_10_1016_j_cej_2020_125229
crossref_primary_10_1016_j_jhazmat_2024_135683
crossref_primary_10_1039_C9NA00462A
crossref_primary_10_1016_j_apsusc_2020_145746
crossref_primary_10_3390_en15176360
crossref_primary_10_1002_adfm_202408300
crossref_primary_10_1016_j_cej_2024_154951
crossref_primary_10_1021_acsanm_3c00668
crossref_primary_10_1021_acscatal_0c00225
crossref_primary_10_1002_ange_202004125
crossref_primary_10_1002_ange_202008962
crossref_primary_10_1021_acs_energyfuels_4c03191
crossref_primary_10_1016_j_ijhydene_2021_08_063
crossref_primary_10_1016_j_jechem_2020_11_018
Cites_doi 10.1039/C2NR33637E
10.1039/C3SC52448E
10.1016/j.apcatb.2015.01.003
10.1016/j.ijhydene.2016.04.102
10.1063/1.479489
10.1039/C4RA05379F
10.1021/acscatal.5b01411
10.1002/anie.201605961
10.1002/anie.201301009
10.1016/j.joule.2018.01.007
10.1039/c2cc31027a
10.1016/j.surfrep.2008.07.001
10.1039/c3cc49821b
10.1002/adma.201205168
10.1088/0953-8984/16/4/001
10.1039/C5TA09159D
10.1002/cssc.201300186
10.1039/c3ta12531a
10.1002/aenm.201500107
10.1021/cr200274s
10.1039/c0dt00404a
10.1002/anie.201300276
10.1016/j.electacta.2011.05.097
10.1126/science.1103197
10.1039/C4EE03690E
10.1021/ja511511q
10.1021/jacs.5b09021
10.1021/ja301696e
10.1021/ja505241x
10.1039/C5TA03111G
10.1039/C5CS00618J
10.1016/S0360-0564(08)60338-7
10.1126/science.1202364
10.1039/b912501a
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201806781
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30803061
10_1002_adma_201806781
ADMA201806781
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4761-5b2d4928f12cdcf380aa94cdeb9f533735795d7541b1c681a4c610671956e7c73
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 13:05:01 EDT 2025
Mon Jul 14 09:36:44 EDT 2025
Thu Apr 03 07:05:42 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Tue Jul 01 00:44:50 EDT 2025
Wed Jan 22 16:46:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords formic acid
DFT calculation
dehydrogenation
catalyst
record activity
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-5b2d4928f12cdcf380aa94cdeb9f533735795d7541b1c681a4c610671956e7c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8511-3810
PMID 30803061
PQID 2205307907
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2186151094
proquest_journals_2205307907
pubmed_primary_30803061
crossref_citationtrail_10_1002_adma_201806781
crossref_primary_10_1002_adma_201806781
wiley_primary_10_1002_adma_201806781_ADMA201806781
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Apr
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-Apr
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 168–169
2015; 5
2013; 25
2013; 1
2015; 3
2010; 39
2011; 56
2004; 305
2015; 8
2013; 5
2013; 6
2014; 136
2011; 332
2016; 55
2016; 4
2009; 11
1963; 14
2014; 5
2018; 2
2014; 4
2012; 112
2012; 134
2015; 137
2004; 16
2013; 52
2016; 41
1999; 111
2008; 63
2012; 48
2014; 50
2016; 45
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 137
  start-page: 15070
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 10234
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 14535
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 657
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 111
  start-page: 2176
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 478
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 35
  year: 1963
  publication-title: Adv. Catal.
– volume: 48
  start-page: 4184
  year: 2012
  publication-title: Chem. Commun.
– volume: 45
  start-page: 3954
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 63
  start-page: 427
  year: 2008
  publication-title: Surf. Sci. Rep.
– volume: 39
  start-page: 8450
  year: 2010
  publication-title: Dalton Trans.
– volume: 134
  start-page: 8926
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 6860
  year: 2011
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 549
  year: 2018
  publication-title: Joule
– volume: 112
  start-page: 782
  year: 2012
  publication-title: Chem. Rev.
– volume: 168–169
  start-page: 423
  year: 2015
  publication-title: Appl. Catal., B
– volume: 16
  start-page: 521
  year: 2004
  publication-title: J. Phys.: Condens. Matter
– volume: 137
  start-page: 106
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1500107
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1172
  year: 2013
  publication-title: ChemSusChem
– volume: 332
  start-page: 224
  year: 2011
  publication-title: Science
– volume: 52
  start-page: 3681
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 30068
  year: 2014
  publication-title: RSC Adv.
– volume: 50
  start-page: 2732
  year: 2014
  publication-title: Chem. Commun.
– volume: 25
  start-page: 2728
  year: 2013
  publication-title: Adv. Mater.
– volume: 11
  start-page: 10340
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 52
  start-page: 4406
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 11849
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 12721
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 41
  start-page: 15453
  year: 2016
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 195
  year: 2014
  publication-title: Chem. Sci.
– volume: 5
  start-page: 5141
  year: 2015
  publication-title: ACS Catal.
– volume: 5
  start-page: 910
  year: 2013
  publication-title: Nanoscale
– ident: e_1_2_4_15_1
  doi: 10.1039/C2NR33637E
– ident: e_1_2_4_22_1
  doi: 10.1039/C3SC52448E
– ident: e_1_2_4_6_1
  doi: 10.1016/j.apcatb.2015.01.003
– ident: e_1_2_4_21_1
  doi: 10.1016/j.ijhydene.2016.04.102
– ident: e_1_2_4_23_1
  doi: 10.1063/1.479489
– ident: e_1_2_4_26_1
  doi: 10.1039/C4RA05379F
– ident: e_1_2_4_18_1
  doi: 10.1021/acscatal.5b01411
– ident: e_1_2_4_31_1
  doi: 10.1002/anie.201605961
– ident: e_1_2_4_8_1
  doi: 10.1002/anie.201301009
– ident: e_1_2_4_2_1
  doi: 10.1016/j.joule.2018.01.007
– ident: e_1_2_4_20_1
  doi: 10.1039/c2cc31027a
– ident: e_1_2_4_25_1
  doi: 10.1016/j.surfrep.2008.07.001
– ident: e_1_2_4_27_1
  doi: 10.1039/c3cc49821b
– ident: e_1_2_4_17_1
  doi: 10.1002/adma.201205168
– ident: e_1_2_4_24_1
  doi: 10.1088/0953-8984/16/4/001
– ident: e_1_2_4_12_1
  doi: 10.1039/C5TA09159D
– ident: e_1_2_4_10_1
  doi: 10.1002/cssc.201300186
– ident: e_1_2_4_28_1
  doi: 10.1039/c3ta12531a
– ident: e_1_2_4_4_1
  doi: 10.1002/aenm.201500107
– ident: e_1_2_4_7_1
  doi: 10.1021/cr200274s
– ident: e_1_2_4_35_1
  doi: 10.1039/c0dt00404a
– ident: e_1_2_4_14_1
  doi: 10.1002/anie.201300276
– ident: e_1_2_4_29_1
  doi: 10.1016/j.electacta.2011.05.097
– ident: e_1_2_4_1_1
  doi: 10.1126/science.1103197
– ident: e_1_2_4_5_1
  doi: 10.1039/C4EE03690E
– ident: e_1_2_4_16_1
  doi: 10.1021/ja511511q
– ident: e_1_2_4_3_1
  doi: 10.1021/jacs.5b09021
– ident: e_1_2_4_13_1
  doi: 10.1021/ja301696e
– ident: e_1_2_4_11_1
  doi: 10.1021/ja505241x
– ident: e_1_2_4_19_1
  doi: 10.1039/C5TA03111G
– ident: e_1_2_4_9_1
  doi: 10.1039/C5CS00618J
– ident: e_1_2_4_33_1
  doi: 10.1016/S0360-0564(08)60338-7
– ident: e_1_2_4_34_1
  doi: 10.1126/science.1202364
– ident: e_1_2_4_32_1
– ident: e_1_2_4_30_1
  doi: 10.1039/b912501a
SSID ssj0009606
Score 2.6102116
Snippet Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous...
Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel-cell-based hydrogen economy. Though the development of heterogeneous...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1806781
SubjectTerms Adsorption
Catalysis
catalyst
Catalysts
Catalytic activity
Dehydrogenation
DFT calculation
Formic acid
Hydrogen-based energy
Materials science
Nanoparticles
record activity
Substrates
Surface energy
Title A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806781
https://www.ncbi.nlm.nih.gov/pubmed/30803061
https://www.proquest.com/docview/2205307907
https://www.proquest.com/docview/2186151094
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhp-bQV9J227QoUMjJycqWLOlosl2WQkpJG8jNyCOZLg27pfYe0l_fGfmRbEIptDcba2RZmhl9Go8-MfZeQrAiCx6VV9pEKpUlxoiQpDlMa8SvNlW0wfn8U764lB-v1NWdXfwdP8QYcCPLiP6aDNxVzektaajzkTdIGPK3tP6hhC1CRRe3_FEEzyPZXqYSm0szsDZO09Nt8e1Z6QHU3EauceqZP2FuaHSXcfL9ZNNWJ_DrHp_j_3zVU_a4x6W86BTpGdsJq-ds7w5b4T5rC_5lSWTC3K0872iP0Vfyz0O8niMA5o5f9PFFPovZIXxd8wUl3axRV8N60_AzChndNG0TBWbh242PD6McFZ8jkF4CL2DpD9jl_MPXs0XSH9qQgNS5SFSVehxhU4sUPNSZmTpnJfhQ2Rqhpc6UtsprJUUlIDfCSciJxo72LQYNOnvBdlfrVXjFeK28ySuvUDLHKoXxGiRoBI0QQPh6wpJh0EroGc3pYI3rsuNiTkvqzXLszQk7Hsv_6Lg8_ljycNCBsrfppqQtyegR7VRP2NH4GK2RfrG42IElnfCFGArXzBP2stOd8VUZgnNcoGHladSAv7ShLGbnxXj3-l-E3rBHeG27RKNDttv-3IS3iKHa6l20k99ygBEm
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAH3o-lBYyExCntOrFj-xh1WS3QrVBpJW5WMnbEqtUuYrOH8us74zzKghASHJN4HMeesb-ZjD8z9kZCsCILHpVX2kQqlSXGiJCkOYxrxK82VbTBeX6cz87khy-qzyakvTAtP8QQcCPLiPM1GTgFpA-uWUNLH4mDhKEJFx2gm3Ssd_SqTq4ZpAigR7q9TCU2l6bnbRynB9vy2-vSb2BzG7vGxWd6j1V9s9uck_P9TVPtw49fGB3_67vus7sdNOVFq0sP2I2wfMju_ERY-Ig1Bf-8ID5hXi49b5mPcbrkn_qQPUcMzEt-0oUY-SQmiPBVzWeUd7NCdQ2rzZofUtToct2so8AkfL308WGUo-JTxNIL4AUs_GN2Nn13ejhLunMbEpA6F4mqUo-DbGqRgoc6M-OytBJ8qGyN6FJnSlvltZKiEpAbUUrIicmOti4GDTp7wnaWq2V4xnitvMkrr1AyxyqF8RokaMSNEED4esSSftQcdKTmdLbGhWvpmFNHvemG3hyxt0P5by2dxx9L7vVK4DqzXjvalYyToh3rEXs9PEaDpL8sZexAR4d8IYxCt3nEnrbKM7wqQ3yOPhpWnkYV-EsbXDGZF8PV838ResVuzU7nR-7o_fHHXXYb79s272iP7TTfN-EFQqqmehmN5gqEhRVB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAcoLyXFjASEqe0ceLnMWpYLY9WVaFSb1YydsSq1W7FZg_l1zN2Hu2CEBIck3gcx54Zf56MPxPyloM3LPcOlZebhAuRJ1ozn2QS0gbxq8lE2OB8eCRnp_zjmTi7sYu_44cYA27BMqK_DgZ-6Zr9a9LQykXeIKaDv8X1z20uUx30ujy5JpAK-Dyy7eUiMZLrgbYxzfY35Tenpd-w5iZ0jXPP9AGphlZ3KSfne-u23oMfvxA6_s9nbZP7PTClRadJD8ktv3hE7t2gK3xM2oJ-mQc2YVotHO14j9FZ0uMhYE8RAdOKnvQBRlrG9BC6bOgsZN0sUVn9cr2iByFmdLVqV1Gg9N-uXHwY5ULxKSLpOdAC5u4JOZ2-_3owS_pTGxLgSrJE1JnDIdYNy8BBk-u0qgwH52vTILZUuVBGOCU4qxlIzSoOMvDYhY2LXoHKn5KtxXLhnxPaCKdl7QRKSqySaaeAg0LUCB6YayYkGQbNQk9pHk7WuLAdGXNmQ2_asTcn5N1Y_rIj8_hjyd1BB2xv1Csb9iSjSzSpmpA342M0x_CPpYodaMMRXwiicNE8Ic863RlflSM6xxUaVp5FDfhLG2xRHhbj1Yt_EXpN7hyXU_v5w9GnHXIXb5su6WiXbLXf1_4l4qm2fhVN5idGjxP5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+and+Effective+Principle+for+a+Rational+Design+of+Heterogeneous+Catalysts+for+Dehydrogenation+of+Formic+Acid&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Si%E2%80%90Jia&rft.au=Zhou%2C+Yi%E2%80%90Tong&rft.au=Kang%2C+Xia&rft.au=Liu%2C+Dong%E2%80%90Xue&rft.date=2019-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201806781&rft.externalDBID=10.1002%252Fadma.201806781&rft.externalDocID=ADMA201806781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon