A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid
Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still un...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 15; pp. e1806781 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono‐/bi‐metallic nanoparticles supported on a NH2‐N‐rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2‐N‐rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts.
A AuPd/NH2‐N‐rGO catalyst shows supreme catalytic performance for the decomposition of formic acid at room temperature, with a turnover frequency (TOF) of 4445.6 h−1. Developments in the experiments and simulations of high‐performance catalysts may promote the practical application of formic acid as a promising hydrogen storage material. |
---|---|
AbstractList | Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono‐/bi‐metallic nanoparticles supported on a NH
2
‐N‐rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH
2
‐N‐rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts. Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono‐/bi‐metallic nanoparticles supported on a NH2‐N‐rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2‐N‐rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts. Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel-cell-based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono-/bi-metallic nanoparticles supported on a NH2 -N-rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2 -N-rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts.Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel-cell-based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono-/bi-metallic nanoparticles supported on a NH2 -N-rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2 -N-rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts. Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono‐/bi‐metallic nanoparticles supported on a NH2‐N‐rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2‐N‐rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts. A AuPd/NH2‐N‐rGO catalyst shows supreme catalytic performance for the decomposition of formic acid at room temperature, with a turnover frequency (TOF) of 4445.6 h−1. Developments in the experiments and simulations of high‐performance catalysts may promote the practical application of formic acid as a promising hydrogen storage material. Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel-cell-based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono-/bi-metallic nanoparticles supported on a NH -N-rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH -N-rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts. |
Author | Li, Si‐Jia Gu, Lin Zhou, Yi‐Tong Yan, Jun‐Min Kang, Xia Liu, Dong‐Xue Jiang, Qing Zhang, Qing‐Hua |
Author_xml | – sequence: 1 givenname: Si‐Jia surname: Li fullname: Li, Si‐Jia organization: Jilin University – sequence: 2 givenname: Yi‐Tong surname: Zhou fullname: Zhou, Yi‐Tong organization: Jilin University – sequence: 3 givenname: Xia surname: Kang fullname: Kang, Xia organization: Jilin University – sequence: 4 givenname: Dong‐Xue surname: Liu fullname: Liu, Dong‐Xue organization: Jilin University – sequence: 5 givenname: Lin surname: Gu fullname: Gu, Lin organization: Chinese Academy of Sciences – sequence: 6 givenname: Qing‐Hua surname: Zhang fullname: Zhang, Qing‐Hua organization: Chinese Academy of Sciences – sequence: 7 givenname: Jun‐Min orcidid: 0000-0001-8511-3810 surname: Yan fullname: Yan, Jun‐Min email: junminyan@jlu.edu.cn organization: Jilin University – sequence: 8 givenname: Qing surname: Jiang fullname: Jiang, Qing email: jiangq@jlu.edu.cn organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30803061$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAURi1URKeFLUtkiQ2bDNfxI_EymulLKqIqsLY8jl1cJfFge6jm3zfJtCBVQqws2edc-X7fCToawmARek9gSQDKz7rt9bIEUoOoavIKLQgvScFA8iO0AEl5IQWrj9FJSvcAIAWIN-iYQg0UBFmg3OBvvt92FuuhxWfOWZP9b4tvoh-Mn-5diFjjW519GHSH1zb5uwEHhy9ttjHc2cGGXcIrnXW3TznNwtr-3Lfz4-xN-HmIvTe4Mb59i1473SX77uk8RT_Oz76vLovrrxdXq-a6MKwSpOCbsmWyrB0pTWscrUFryUxrN9JxSivKK8nbijOyIUbURDMjyJgDkVzYylT0FH06zN3G8GtnU1a9T8Z2nZ7_rEpSC8IJSDaiH1-g92EXx4VHqgROoZIwDfzwRO02vW3VNvpex716znME2AEwMaQUrVPG5zmCHLXvFAE11aam2tSf2kZt-UJ7nvxPQR6EB9_Z_X9o1ay_NH_dR0_8qOs |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215302 crossref_primary_10_1016_j_ijhydene_2020_11_260 crossref_primary_10_1039_C9TA07721A crossref_primary_10_1039_D3NR05207A crossref_primary_10_1002_cctc_202400013 crossref_primary_10_1002_adfm_202203418 crossref_primary_10_1039_C9QI01375J crossref_primary_10_1016_j_ijhydene_2020_03_016 crossref_primary_10_1021_acscatal_2c03893 crossref_primary_10_1021_acscatal_2c06369 crossref_primary_10_1021_acsami_9b16981 crossref_primary_10_1016_j_mtchem_2022_101001 crossref_primary_10_1039_D1TA06059G crossref_primary_10_1016_j_jcis_2023_11_040 crossref_primary_10_1021_acsami_2c00343 crossref_primary_10_1002_smll_202204647 crossref_primary_10_1021_acsami_3c03684 crossref_primary_10_1039_D3SC05851D crossref_primary_10_1016_j_jcat_2021_10_007 crossref_primary_10_1038_s41598_020_75369_y crossref_primary_10_1002_anie_202409001 crossref_primary_10_1021_acscatal_4c02491 crossref_primary_10_1016_j_jcis_2023_12_085 crossref_primary_10_1021_acsaem_1c00520 crossref_primary_10_1038_s41467_023_36142_7 crossref_primary_10_3390_nano11113028 crossref_primary_10_1016_j_ijhydene_2022_06_190 crossref_primary_10_1088_1361_6528_ab32fd crossref_primary_10_1016_j_xcrp_2023_101248 crossref_primary_10_1016_j_chemosphere_2021_130229 crossref_primary_10_1016_j_jcat_2022_04_021 crossref_primary_10_1021_acscatal_4c00959 crossref_primary_10_1016_j_fuel_2023_128333 crossref_primary_10_3390_en17010260 crossref_primary_10_3390_molecules24183290 crossref_primary_10_1039_D1TA05472D crossref_primary_10_1021_acsanm_1c02204 crossref_primary_10_1007_s11708_023_0895_3 crossref_primary_10_1021_acs_energyfuels_4c05960 crossref_primary_10_1007_s12274_019_2579_1 crossref_primary_10_1051_epjap_2023220271 crossref_primary_10_1021_acs_iecr_1c03970 crossref_primary_10_3390_catal12050563 crossref_primary_10_1016_j_mtchem_2021_100467 crossref_primary_10_1039_D3EE03761D crossref_primary_10_1021_acs_chemrev_1c00493 crossref_primary_10_1134_S2070050424700181 crossref_primary_10_1021_acs_inorgchem_2c01640 crossref_primary_10_1039_D0CS00515K crossref_primary_10_1021_acssuschemeng_1c08630 crossref_primary_10_1007_s11467_019_0923_2 crossref_primary_10_1002_anie_202423661 crossref_primary_10_1016_j_ijhydene_2020_11_058 crossref_primary_10_3390_catal13081168 crossref_primary_10_1016_j_jcat_2020_06_033 crossref_primary_10_1016_j_renene_2021_03_100 crossref_primary_10_1039_C9TA10196A crossref_primary_10_1002_cey2_269 crossref_primary_10_1021_acsami_4c13440 crossref_primary_10_1016_j_jhazmat_2022_130677 crossref_primary_10_1021_acsami_2c02055 crossref_primary_10_1039_C9NR09660D crossref_primary_10_1021_acs_iecr_3c00473 crossref_primary_10_1002_ange_202409001 crossref_primary_10_1002_ejoc_202201006 crossref_primary_10_1063_5_0152761 crossref_primary_10_1016_j_jcis_2021_06_160 crossref_primary_10_1016_j_rechem_2022_100554 crossref_primary_10_1002_ange_202423661 crossref_primary_10_1016_j_jcis_2024_06_216 crossref_primary_10_1039_C9TA06987A crossref_primary_10_1021_acs_jpclett_2c02149 crossref_primary_10_1038_s41467_024_52517_w crossref_primary_10_1002_anie_202008962 crossref_primary_10_1016_j_cej_2023_144640 crossref_primary_10_1016_j_cjche_2020_07_067 crossref_primary_10_1002_anie_202004125 crossref_primary_10_1039_D4EY00281D crossref_primary_10_1002_smll_202407578 crossref_primary_10_1039_C9NR06080D crossref_primary_10_1002_adma_202416126 crossref_primary_10_1016_j_jcat_2022_05_021 crossref_primary_10_1021_acsami_4c10391 crossref_primary_10_3390_catal12030325 crossref_primary_10_1039_C9NR07144J crossref_primary_10_1016_j_fuel_2024_132751 crossref_primary_10_1021_acscatal_2c04137 crossref_primary_10_1021_acssuschemeng_2c06538 crossref_primary_10_3390_catal15040305 crossref_primary_10_1039_D2NJ04891D crossref_primary_10_1039_D1GC02012A crossref_primary_10_1016_j_jcis_2022_10_048 crossref_primary_10_1021_acsomega_2c05988 crossref_primary_10_1016_j_apsusc_2024_160799 crossref_primary_10_1039_C9CY02464F crossref_primary_10_1016_j_fuel_2023_130459 crossref_primary_10_1002_adma_202403664 crossref_primary_10_1039_D0NJ06124G crossref_primary_10_1021_acssuschemeng_3c06903 crossref_primary_10_18412_1816_0387_2023_5_55_66 crossref_primary_10_1039_D3NJ01188G crossref_primary_10_1002_cctc_202300418 crossref_primary_10_1021_acsami_2c05099 crossref_primary_10_1016_j_jelechem_2020_114023 crossref_primary_10_1016_j_cej_2020_125229 crossref_primary_10_1016_j_jhazmat_2024_135683 crossref_primary_10_1039_C9NA00462A crossref_primary_10_1016_j_apsusc_2020_145746 crossref_primary_10_3390_en15176360 crossref_primary_10_1002_adfm_202408300 crossref_primary_10_1016_j_cej_2024_154951 crossref_primary_10_1021_acsanm_3c00668 crossref_primary_10_1021_acscatal_0c00225 crossref_primary_10_1002_ange_202004125 crossref_primary_10_1002_ange_202008962 crossref_primary_10_1021_acs_energyfuels_4c03191 crossref_primary_10_1016_j_ijhydene_2021_08_063 crossref_primary_10_1016_j_jechem_2020_11_018 |
Cites_doi | 10.1039/C2NR33637E 10.1039/C3SC52448E 10.1016/j.apcatb.2015.01.003 10.1016/j.ijhydene.2016.04.102 10.1063/1.479489 10.1039/C4RA05379F 10.1021/acscatal.5b01411 10.1002/anie.201605961 10.1002/anie.201301009 10.1016/j.joule.2018.01.007 10.1039/c2cc31027a 10.1016/j.surfrep.2008.07.001 10.1039/c3cc49821b 10.1002/adma.201205168 10.1088/0953-8984/16/4/001 10.1039/C5TA09159D 10.1002/cssc.201300186 10.1039/c3ta12531a 10.1002/aenm.201500107 10.1021/cr200274s 10.1039/c0dt00404a 10.1002/anie.201300276 10.1016/j.electacta.2011.05.097 10.1126/science.1103197 10.1039/C4EE03690E 10.1021/ja511511q 10.1021/jacs.5b09021 10.1021/ja301696e 10.1021/ja505241x 10.1039/C5TA03111G 10.1039/C5CS00618J 10.1016/S0360-0564(08)60338-7 10.1126/science.1202364 10.1039/b912501a |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201806781 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30803061 10_1002_adma_201806781 ADMA201806781 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4761-5b2d4928f12cdcf380aa94cdeb9f533735795d7541b1c681a4c610671956e7c73 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 13:05:01 EDT 2025 Mon Jul 14 09:36:44 EDT 2025 Thu Apr 03 07:05:42 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Tue Jul 01 00:44:50 EDT 2025 Wed Jan 22 16:46:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | formic acid DFT calculation dehydrogenation catalyst record activity |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-5b2d4928f12cdcf380aa94cdeb9f533735795d7541b1c681a4c610671956e7c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8511-3810 |
PMID | 30803061 |
PQID | 2205307907 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2186151094 proquest_journals_2205307907 pubmed_primary_30803061 crossref_citationtrail_10_1002_adma_201806781 crossref_primary_10_1002_adma_201806781 wiley_primary_10_1002_adma_201806781_ADMA201806781 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Apr |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-Apr |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 168–169 2015; 5 2013; 25 2013; 1 2015; 3 2010; 39 2011; 56 2004; 305 2015; 8 2013; 5 2013; 6 2014; 136 2011; 332 2016; 55 2016; 4 2009; 11 1963; 14 2014; 5 2018; 2 2014; 4 2012; 112 2012; 134 2015; 137 2004; 16 2013; 52 2016; 41 1999; 111 2008; 63 2012; 48 2014; 50 2016; 45 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 137 start-page: 15070 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 10234 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 14535 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 start-page: 657 year: 2016 publication-title: J. Mater. Chem. A – volume: 111 start-page: 2176 year: 1999 publication-title: J. Chem. Phys. – volume: 8 start-page: 478 year: 2015 publication-title: Energy Environ. Sci. – volume: 14 start-page: 35 year: 1963 publication-title: Adv. Catal. – volume: 48 start-page: 4184 year: 2012 publication-title: Chem. Commun. – volume: 45 start-page: 3954 year: 2016 publication-title: Chem. Soc. Rev. – volume: 305 start-page: 972 year: 2004 publication-title: Science – volume: 63 start-page: 427 year: 2008 publication-title: Surf. Sci. Rep. – volume: 39 start-page: 8450 year: 2010 publication-title: Dalton Trans. – volume: 134 start-page: 8926 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 6860 year: 2011 publication-title: Electrochim. Acta – volume: 2 start-page: 549 year: 2018 publication-title: Joule – volume: 112 start-page: 782 year: 2012 publication-title: Chem. Rev. – volume: 168–169 start-page: 423 year: 2015 publication-title: Appl. Catal., B – volume: 16 start-page: 521 year: 2004 publication-title: J. Phys.: Condens. Matter – volume: 137 start-page: 106 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1500107 year: 2015 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1172 year: 2013 publication-title: ChemSusChem – volume: 332 start-page: 224 year: 2011 publication-title: Science – volume: 52 start-page: 3681 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 30068 year: 2014 publication-title: RSC Adv. – volume: 50 start-page: 2732 year: 2014 publication-title: Chem. Commun. – volume: 25 start-page: 2728 year: 2013 publication-title: Adv. Mater. – volume: 11 start-page: 10340 year: 2009 publication-title: Phys. Chem. Chem. Phys. – volume: 52 start-page: 4406 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 11849 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 12721 year: 2013 publication-title: J. Mater. Chem. A – volume: 41 start-page: 15453 year: 2016 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 195 year: 2014 publication-title: Chem. Sci. – volume: 5 start-page: 5141 year: 2015 publication-title: ACS Catal. – volume: 5 start-page: 910 year: 2013 publication-title: Nanoscale – ident: e_1_2_4_15_1 doi: 10.1039/C2NR33637E – ident: e_1_2_4_22_1 doi: 10.1039/C3SC52448E – ident: e_1_2_4_6_1 doi: 10.1016/j.apcatb.2015.01.003 – ident: e_1_2_4_21_1 doi: 10.1016/j.ijhydene.2016.04.102 – ident: e_1_2_4_23_1 doi: 10.1063/1.479489 – ident: e_1_2_4_26_1 doi: 10.1039/C4RA05379F – ident: e_1_2_4_18_1 doi: 10.1021/acscatal.5b01411 – ident: e_1_2_4_31_1 doi: 10.1002/anie.201605961 – ident: e_1_2_4_8_1 doi: 10.1002/anie.201301009 – ident: e_1_2_4_2_1 doi: 10.1016/j.joule.2018.01.007 – ident: e_1_2_4_20_1 doi: 10.1039/c2cc31027a – ident: e_1_2_4_25_1 doi: 10.1016/j.surfrep.2008.07.001 – ident: e_1_2_4_27_1 doi: 10.1039/c3cc49821b – ident: e_1_2_4_17_1 doi: 10.1002/adma.201205168 – ident: e_1_2_4_24_1 doi: 10.1088/0953-8984/16/4/001 – ident: e_1_2_4_12_1 doi: 10.1039/C5TA09159D – ident: e_1_2_4_10_1 doi: 10.1002/cssc.201300186 – ident: e_1_2_4_28_1 doi: 10.1039/c3ta12531a – ident: e_1_2_4_4_1 doi: 10.1002/aenm.201500107 – ident: e_1_2_4_7_1 doi: 10.1021/cr200274s – ident: e_1_2_4_35_1 doi: 10.1039/c0dt00404a – ident: e_1_2_4_14_1 doi: 10.1002/anie.201300276 – ident: e_1_2_4_29_1 doi: 10.1016/j.electacta.2011.05.097 – ident: e_1_2_4_1_1 doi: 10.1126/science.1103197 – ident: e_1_2_4_5_1 doi: 10.1039/C4EE03690E – ident: e_1_2_4_16_1 doi: 10.1021/ja511511q – ident: e_1_2_4_3_1 doi: 10.1021/jacs.5b09021 – ident: e_1_2_4_13_1 doi: 10.1021/ja301696e – ident: e_1_2_4_11_1 doi: 10.1021/ja505241x – ident: e_1_2_4_19_1 doi: 10.1039/C5TA03111G – ident: e_1_2_4_9_1 doi: 10.1039/C5CS00618J – ident: e_1_2_4_33_1 doi: 10.1016/S0360-0564(08)60338-7 – ident: e_1_2_4_34_1 doi: 10.1126/science.1202364 – ident: e_1_2_4_32_1 – ident: e_1_2_4_30_1 doi: 10.1039/b912501a |
SSID | ssj0009606 |
Score | 2.6102116 |
Snippet | Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous... Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel-cell-based hydrogen economy. Though the development of heterogeneous... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1806781 |
SubjectTerms | Adsorption Catalysis catalyst Catalysts Catalytic activity Dehydrogenation DFT calculation Formic acid Hydrogen-based energy Materials science Nanoparticles record activity Substrates Surface energy |
Title | A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806781 https://www.ncbi.nlm.nih.gov/pubmed/30803061 https://www.proquest.com/docview/2205307907 https://www.proquest.com/docview/2186151094 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhp-bQV9J227QoUMjJycqWLOlosl2WQkpJG8jNyCOZLg27pfYe0l_fGfmRbEIptDcba2RZmhl9Go8-MfZeQrAiCx6VV9pEKpUlxoiQpDlMa8SvNlW0wfn8U764lB-v1NWdXfwdP8QYcCPLiP6aDNxVzektaajzkTdIGPK3tP6hhC1CRRe3_FEEzyPZXqYSm0szsDZO09Nt8e1Z6QHU3EauceqZP2FuaHSXcfL9ZNNWJ_DrHp_j_3zVU_a4x6W86BTpGdsJq-ds7w5b4T5rC_5lSWTC3K0872iP0Vfyz0O8niMA5o5f9PFFPovZIXxd8wUl3axRV8N60_AzChndNG0TBWbh242PD6McFZ8jkF4CL2DpD9jl_MPXs0XSH9qQgNS5SFSVehxhU4sUPNSZmTpnJfhQ2Rqhpc6UtsprJUUlIDfCSciJxo72LQYNOnvBdlfrVXjFeK28ySuvUDLHKoXxGiRoBI0QQPh6wpJh0EroGc3pYI3rsuNiTkvqzXLszQk7Hsv_6Lg8_ljycNCBsrfppqQtyegR7VRP2NH4GK2RfrG42IElnfCFGArXzBP2stOd8VUZgnNcoGHladSAv7ShLGbnxXj3-l-E3rBHeG27RKNDttv-3IS3iKHa6l20k99ygBEm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAH3o-lBYyExCntOrFj-xh1WS3QrVBpJW5WMnbEqtUuYrOH8us74zzKghASHJN4HMeesb-ZjD8z9kZCsCILHpVX2kQqlSXGiJCkOYxrxK82VbTBeX6cz87khy-qzyakvTAtP8QQcCPLiPM1GTgFpA-uWUNLH4mDhKEJFx2gm3Ssd_SqTq4ZpAigR7q9TCU2l6bnbRynB9vy2-vSb2BzG7vGxWd6j1V9s9uck_P9TVPtw49fGB3_67vus7sdNOVFq0sP2I2wfMju_ERY-Ig1Bf-8ID5hXi49b5mPcbrkn_qQPUcMzEt-0oUY-SQmiPBVzWeUd7NCdQ2rzZofUtToct2so8AkfL308WGUo-JTxNIL4AUs_GN2Nn13ejhLunMbEpA6F4mqUo-DbGqRgoc6M-OytBJ8qGyN6FJnSlvltZKiEpAbUUrIicmOti4GDTp7wnaWq2V4xnitvMkrr1AyxyqF8RokaMSNEED4esSSftQcdKTmdLbGhWvpmFNHvemG3hyxt0P5by2dxx9L7vVK4DqzXjvalYyToh3rEXs9PEaDpL8sZexAR4d8IYxCt3nEnrbKM7wqQ3yOPhpWnkYV-EsbXDGZF8PV838ResVuzU7nR-7o_fHHXXYb79s272iP7TTfN-EFQqqmehmN5gqEhRVB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAcoLyXFjASEqe0ceLnMWpYLY9WVaFSb1YydsSq1W7FZg_l1zN2Hu2CEBIck3gcx54Zf56MPxPyloM3LPcOlZebhAuRJ1ozn2QS0gbxq8lE2OB8eCRnp_zjmTi7sYu_44cYA27BMqK_DgZ-6Zr9a9LQykXeIKaDv8X1z20uUx30ujy5JpAK-Dyy7eUiMZLrgbYxzfY35Tenpd-w5iZ0jXPP9AGphlZ3KSfne-u23oMfvxA6_s9nbZP7PTClRadJD8ktv3hE7t2gK3xM2oJ-mQc2YVotHO14j9FZ0uMhYE8RAdOKnvQBRlrG9BC6bOgsZN0sUVn9cr2iByFmdLVqV1Gg9N-uXHwY5ULxKSLpOdAC5u4JOZ2-_3owS_pTGxLgSrJE1JnDIdYNy8BBk-u0qgwH52vTILZUuVBGOCU4qxlIzSoOMvDYhY2LXoHKn5KtxXLhnxPaCKdl7QRKSqySaaeAg0LUCB6YayYkGQbNQk9pHk7WuLAdGXNmQ2_asTcn5N1Y_rIj8_hjyd1BB2xv1Csb9iSjSzSpmpA342M0x_CPpYodaMMRXwiicNE8Ic863RlflSM6xxUaVp5FDfhLG2xRHhbj1Yt_EXpN7hyXU_v5w9GnHXIXb5su6WiXbLXf1_4l4qm2fhVN5idGjxP5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+and+Effective+Principle+for+a+Rational+Design+of+Heterogeneous+Catalysts+for+Dehydrogenation+of+Formic+Acid&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Si%E2%80%90Jia&rft.au=Zhou%2C+Yi%E2%80%90Tong&rft.au=Kang%2C+Xia&rft.au=Liu%2C+Dong%E2%80%90Xue&rft.date=2019-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201806781&rft.externalDBID=10.1002%252Fadma.201806781&rft.externalDocID=ADMA201806781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |