A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid

Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still un...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 15; pp. e1806781 - n/a
Main Authors Li, Si‐Jia, Zhou, Yi‐Tong, Kang, Xia, Liu, Dong‐Xue, Gu, Lin, Zhang, Qing‐Hua, Yan, Jun‐Min, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel‐cell‐based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono‐/bi‐metallic nanoparticles supported on a NH2‐N‐rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2‐N‐rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts. A AuPd/NH2‐N‐rGO catalyst shows supreme catalytic performance for the decomposition of formic acid at room temperature, with a turnover frequency (TOF) of 4445.6 h−1. Developments in the experiments and simulations of high‐performance catalysts may promote the practical application of formic acid as a promising hydrogen storage material.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.201806781