Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems
Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the avai...
Saved in:
Published in | The New phytologist Vol. 214; no. 1; pp. 97 - 107 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.04.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both.
BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site.
BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA: 15N2 ratios increased with increasing Mo additions.
These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability. |
---|---|
AbstractList | Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15 N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15 N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15 N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15 N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability. Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a N tracer technique to assess the ARA to N fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : N ratios increased with increasing Mo additions. These findings show that N fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability. * Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. * BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a super(15)N sub(2) tracer technique to assess the ARA to N sub(2) fixation conversion ratios at our subarctic site. * BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : super(15)N sub(2) ratios increased with increasing Mo additions. * These findings show that N sub(2) fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability. Biological nitrogen fixation (BNF) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a ¹⁵N₂ tracer technique to assess the ARA to N₂ fixation conversion ratios at our subarctic site. BNF was up to four‐fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : ¹⁵N₂ ratios increased with increasing Mo additions. These findings show that N₂ fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability. Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA: 15N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability. Summary Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability. Biological nitrogen fixation ( BNF ) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay ( ARA ) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15 N 2 tracer technique to assess the ARA to N 2 fixation conversion ratios at our subarctic site. BNF was up to four‐fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15 N 2 ratios increased with increasing Mo additions. These findings show that N 2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability. Summary Biological nitrogen fixation (BNF) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four‐fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability. |
Author | Kathrin Rousk Robert Bradley Jean-Philippe Bellenger Anders Michelsen Jefferson Degboe |
Author_xml | – sequence: 1 givenname: Kathrin orcidid: 0000-0003-3140-9864 surname: Rousk fullname: Rousk, Kathrin email: kathrin.rousk@bio.ku.dk organization: University of Copenhagen – sequence: 2 givenname: Jefferson surname: Degboe fullname: Degboe, Jefferson organization: Université de Sherbrooke – sequence: 3 givenname: Anders surname: Michelsen fullname: Michelsen, Anders organization: University of Copenhagen – sequence: 4 givenname: Robert surname: Bradley fullname: Bradley, Robert organization: Université de Sherbrooke – sequence: 5 givenname: Jean‐Philippe surname: Bellenger fullname: Bellenger, Jean‐Philippe organization: Université de Sherbrooke |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27883187$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtr3DAUhUVJaSZpF_0BLYJumoUTvazHsoQmKaSPRQJd1cjydaPBliaSTTP_vprMJItAH4KLNt853HvOAdoLMQBCryk5puWdhNXNMRWc02doQYU0laZc7aEFIUxXUsjv--gg5yUhxNSSvUD7TGnNqVYL9ONzHNZtB2EesQ0dXt3EXCbNGQ9-9JOdfAw49niMOVc25-i8naDDwU8p_oSAe3-3hXzAbUxgBwwu5nWeYMwv0fPeDhle7f5DdH328er0orr8ev7p9MNl5YSStKLEWUU7xqUBpqVxfcfA6R4oCKK1lEBcW3dC1xKkJDW0hrRSE2GU61sj-CF6v_VdpXg7Q56a0WcHw2ADxDk3rNwujORS_RMtsSgteG3Yf6CCG6n0_QLvnqDLOKdQbt4YMsqZ4Bvq7Y6a2xG6ZpX8aNO6eeijAEdbwKWSd4L-EaGk2XTdlK6b-64Le_KEdbu-pmT98DfFLz_A-s_WzZdvFw-KN1vFMk8xPSpMiZPWdc1_A9lBwyU |
CitedBy_id | crossref_primary_10_1007_s10533_020_00671_w crossref_primary_10_1016_j_geoderma_2024_117128 crossref_primary_10_3389_fmicb_2020_611792 crossref_primary_10_1002_ecs2_70109 crossref_primary_10_1371_journal_pone_0198860 crossref_primary_10_1016_j_scitotenv_2023_162965 crossref_primary_10_3390_agronomy14091971 crossref_primary_10_1038_s41396_020_00738_4 crossref_primary_10_1016_j_scitotenv_2020_142202 crossref_primary_10_1007_s10533_021_00761_3 crossref_primary_10_1016_j_soilbio_2023_108975 crossref_primary_10_1093_gbe_evz137 crossref_primary_10_1016_j_scitotenv_2020_137410 crossref_primary_10_1016_j_soilbio_2021_108531 crossref_primary_10_1007_s10533_022_00986_w crossref_primary_10_1016_j_pedsph_2023_09_002 crossref_primary_10_1029_2020GB006787 crossref_primary_10_1111_nph_16611 crossref_primary_10_1007_s42729_020_00364_1 crossref_primary_10_1007_s10653_022_01302_z crossref_primary_10_1093_aob_mcab127 crossref_primary_10_1111_gcb_15328 crossref_primary_10_3389_fmicb_2024_1407391 crossref_primary_10_1002_ecs2_2117 crossref_primary_10_1007_s10533_024_01195_3 crossref_primary_10_1007_s11104_020_04695_x crossref_primary_10_1016_j_marpolbul_2021_112126 crossref_primary_10_7717_peerj_11985 crossref_primary_10_1186_s40168_021_01001_4 crossref_primary_10_1093_jxb_erac127 crossref_primary_10_1639_0007_2745_120_3_347 crossref_primary_10_1016_j_scitotenv_2018_02_192 crossref_primary_10_1016_j_envres_2025_121416 crossref_primary_10_1007_s10533_017_0341_x crossref_primary_10_1038_ismej_2017_134 crossref_primary_10_1007_s11258_018_0838_y crossref_primary_10_1016_j_agee_2020_106987 crossref_primary_10_1007_s10021_022_00804_2 crossref_primary_10_1016_j_ecolind_2022_108806 crossref_primary_10_1093_jxb_erac091 crossref_primary_10_1002_ecy_3211 crossref_primary_10_1007_s11104_020_04492_6 crossref_primary_10_1139_cjfr_2024_0017 crossref_primary_10_1016_j_crmicr_2024_100284 crossref_primary_10_1016_j_scitotenv_2018_08_318 crossref_primary_10_1093_jpe_rtaa050 crossref_primary_10_1111_1462_2920_16555 crossref_primary_10_1016_j_geoderma_2023_116410 crossref_primary_10_1016_j_soilbio_2018_05_002 crossref_primary_10_1038_s41564_023_01573_x crossref_primary_10_1002_ecy_2938 crossref_primary_10_1111_gcb_14705 crossref_primary_10_1007_s42729_022_00913_w crossref_primary_10_1007_s10533_017_0393_y crossref_primary_10_1111_1365_2745_13881 crossref_primary_10_1371_journal_pone_0228383 crossref_primary_10_1111_1462_2920_13857 crossref_primary_10_1007_s10933_022_00265_6 crossref_primary_10_1038_s41598_022_24860_9 crossref_primary_10_1007_s13199_023_00930_y crossref_primary_10_1073_pnas_1913314116 crossref_primary_10_1007_s10533_020_00666_7 crossref_primary_10_3390_plants12051164 crossref_primary_10_1016_j_soilbio_2017_11_024 crossref_primary_10_5194_soil_9_623_2023 crossref_primary_10_1007_s10021_020_00534_3 crossref_primary_10_1016_j_actao_2021_103796 crossref_primary_10_1016_j_chemgeo_2022_121075 crossref_primary_10_1016_j_scitotenv_2022_155761 crossref_primary_10_1007_s11356_021_16191_5 crossref_primary_10_1093_molbev_msy029 crossref_primary_10_1111_1365_2435_14088 crossref_primary_10_1111_gcb_17401 crossref_primary_10_1021_acs_chemrev_9b00613 crossref_primary_10_1186_s13568_020_00994_9 crossref_primary_10_1021_acs_est_2c03213 crossref_primary_10_3390_plants12071443 crossref_primary_10_1007_s13204_018_00939_6 |
Cites_doi | 10.1007/s00248-014-0534-y 10.1007/s10533-013-9835-3 10.1016/j.geoderma.2016.03.018 10.1111/j.1365-2486.2006.01263.x 10.1111/nph.14166 10.1021/cr950057h 10.1139/w98-219 10.1002/cbic.200400263 10.1038/ismej.2016.17 10.1071/BT11059 10.1007/s11104-013-1984-6 10.1111/j.1462-2920.2011.02440.x 10.1042/bj2560429 10.1038/nature12129 10.1002/(SICI)1522-2624(199906)162:3<309::AID-JPLN309>3.0.CO;2-6 10.1007/s10533-015-0121-4 10.1021/es3018539 10.1016/j.soilbio.2013.08.018 10.1007/s10533-016-0188-6 10.1007/s00442-009-1299-8 10.1007/s13280-012-0303-4 10.1111/gcb.13418 10.1002/anie.200604858 10.1007/s11104-013-1908-5 10.1007/s10021-012-9562-y 10.1104/pp.43.8.1185 10.1128/JB.145.2.743-751.1981 10.1017/CBO9781107415416 10.1139/b91-345 10.1016/0038-0717(73)90093-X 10.1111/j.1365-2486.2011.02407.x 10.1111/j.1365-2486.2010.02234.x 10.1201/b10158 10.4319/lo.2010.55.2.0667 10.1016/0038-0717(89)90106-5 10.1007/s11258-008-9527-6 10.1016/0016-7037(95)00038-2 10.1080/09670262.2013.873143 10.1007/s10021-010-9336-3 10.1016/j.envexpbot.2013.01.004 10.1179/jbr.2001.23.4.319 10.1639/05 10.1038/nature01051 10.1007/s00203-002-0499-y 10.1128/AEM.48.3.594-600.1984 10.1007/s10533-014-0019-6 10.1186/2192-1709-1-6 10.1139/x11-176 10.1016/0038-0717(81)90109-7 10.1038/ngeo589 10.1111/j.1469-8137.2012.04071.x 10.1016/j.envexpbot.2012.12.006 10.1111/j.1365-2486.2006.01128.x 10.1128/AEM.02694-07 10.1016/j.soilbio.2013.11.015 10.1038/ngeo366 10.1126/science.1095549 10.1111/gcb.13296 10.1139/x83-105 10.1046/j.1469-8137.1999.00479.x 10.1111/nph.12777 10.1111/j.1600-0706.2010.18641.x 10.2307/1939545 10.1073/pnas.1314284111 10.1371/journal.pone.0033710 |
ContentType | Journal Article |
Copyright | 2016 New Phytologist Trust 2016 The Authors. New Phytologist © 2016 New Phytologist Trust 2016 The Authors. New Phytologist © 2016 New Phytologist Trust. Copyright © 2017 New Phytologist Trust |
Copyright_xml | – notice: 2016 New Phytologist Trust – notice: 2016 The Authors. New Phytologist © 2016 New Phytologist Trust – notice: 2016 The Authors. New Phytologist © 2016 New Phytologist Trust. – notice: Copyright © 2017 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.14331 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 107 |
ExternalDocumentID | 4317212771 27883187 10_1111_nph_14331 NPH14331 90001555 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Canadian Research Chair in Boreal Biogeochemistry funderid: CRC‐950‐230570 – fundername: Danish National Research Foundation – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 305985129 – fundername: FP7 Marie Curie Actions – COFUND funderid: DFF – 1325‐00025 – fundername: Danish Council for Independent Research |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4761-10ca71d2369e2869cfd2ec8fe1e408866e0cb5d4856e6605eb90b680497cfb943 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:33:33 EDT 2025 Fri Jul 11 15:50:00 EDT 2025 Fri Jul 11 09:36:08 EDT 2025 Fri Jul 25 12:08:00 EDT 2025 Wed Feb 19 02:43:04 EST 2025 Thu Apr 24 23:00:06 EDT 2025 Tue Jul 01 03:09:25 EDT 2025 Wed Jan 22 16:54:33 EST 2025 Thu Jul 03 22:32:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | boreal forests cyanobacteria subarctic tundra biological nitrogen fixation molybdenum (Mo) Hylocomium splendens Pleurozium schreberi phosphorus (P) |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 The Authors. New Phytologist © 2016 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-10ca71d2369e2869cfd2ec8fe1e408866e0cb5d4856e6605eb90b680497cfb943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3140-9864 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14331 |
PMID | 27883187 |
PQID | 1872132434 |
PQPubID | 2026848 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000496367 proquest_miscellaneous_1877843592 proquest_miscellaneous_1843967894 proquest_journals_1872132434 pubmed_primary_27883187 crossref_primary_10_1111_nph_14331 crossref_citationtrail_10_1111_nph_14331 wiley_primary_10_1111_nph_14331_NPH14331 jstor_primary_90001555 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170401 April 2017 2017-04-00 2017-Apr |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 4 year: 2017 text: 20170401 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2017 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 2010; 55 2010; 13 1981; 145 2013; 67 2009; 160 1999; 45 2014a; 377 2014; 69 2011; 13 2008; 74 2011; 59 2012; 15 2011; 17 1983; 13 1988; 256 2000; 162 2013; 114 2014; 121 2009; 202 2014; 202 2016; 273 2011; 120 1989; 21 2006; 12 1984; 48 2010 1995; 59 2015; 125 2013; 89 2002; 79 2014; 49 2016; 10 2013; 90 1999; 143 1996; 96 2002; 419 2016; 127 2014; 111 2001; 23 2004; 304 1968; 43 2007; 13 2012; 194 2015; 69 1991; 69 2003; 106 2012; 1 1980; 13 2000; 75 2013; 497 2005; 6 2016 2014 2016; 213 1973; 5 2009; 2 2012; 46 2012; 7 2007; 46 2012; 42 2012; 41 2014b; 374 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 R Core Team (e_1_2_7_41_1) 2014 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 69 start-page: 413 year: 2014 end-page: 420 article-title: Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N fixing bacteria in soils publication-title: Soil Biology and Biochemistry – volume: 2 start-page: 625 year: 2009 end-page: 629 article-title: Storage and bioavailability of molybdenum in soils increased by organic matter complexation publication-title: Nature Geoscience – volume: 13 start-page: 28 year: 2007 end-page: 39 article-title: Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem publication-title: Global Change Biology – volume: 7 start-page: e33710 year: 2012 article-title: Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests publication-title: PLoS One – volume: 13 start-page: 1395 year: 2011 end-page: 1411 article-title: Essential metals for nitrogen fixation in a free‐living N‐fixing bacterium: chelation, homeostasis and high use efficiency publication-title: Environmental Microbiology – volume: 45 start-page: 223 year: 1999 end-page: 229 article-title: Conversion factor between acetylene reduction and nitrogen fixation in free‐living cyanobacteria from high arctic habitats publication-title: Canadian Journal of Microbiology – volume: 46 start-page: 8667 year: 2012 end-page: 8671 article-title: Short‐term N fixation kinetics in a moss‐associated cyanobacteria publication-title: Environmental Science and Technology – volume: 89 start-page: 44 year: 2013 end-page: 50 article-title: Fen mosses can tolerate some saline conditions found in oil sands process water publication-title: Environmental and Experimental Botany – volume: 5 start-page: 47 year: 1973 end-page: 81 article-title: Applications of the acetylene–ethylene assay for measurement of nitrogen fixation publication-title: Soil Biology and Biochemistry – volume: 13 start-page: 83 year: 1980 end-page: 85 article-title: Comparative C H reduction and N fixation in deciduous wood litter publication-title: Soil Biology and Biochemistry – volume: 15 start-page: 986 year: 2012 end-page: 998 article-title: N fixation in feather mosses is a sensitive indicator of N deposition in boreal forests publication-title: Ecosystems – volume: 127 start-page: 189 year: 2016 end-page: 198 article-title: Alternative nitrogenase activity in the environment and nitrogen cycle implications publication-title: Biogeochemistry – volume: 125 start-page: 167 year: 2015 end-page: 183 article-title: Soil organic matter regulates molybdenum storage and mobility in forests publication-title: Biogeochemistry – volume: 48 start-page: 594 year: 1984 end-page: 600 article-title: Effects of abiotic factors on acetylene reduction by cyanobacteria epiphytic on moss at a subantarctic island publication-title: Applied and Environmental Microbiology – volume: 96 start-page: 3013 year: 1996 end-page: 3030 article-title: Structure–function relationships of alternative nitrogenase publication-title: Chemical Review – volume: 160 start-page: 309 year: 2009 end-page: 319 article-title: Nitrogen fixation in mixed moss communities publication-title: Oecologia – volume: 13 start-page: 612 year: 2010 end-page: 627 article-title: The bryosphere: an integral and influential component of the earth's biosphere publication-title: Ecosystems – volume: 419 start-page: 917 year: 2002 end-page: 919 article-title: Quantifying nitrogen‐fixation in feather moss carpets of boreal forests publication-title: Nature – year: 2014 – volume: 22 start-page: 4150 year: 2016 end-page: 4161 article-title: Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments publication-title: Global Change Biology – volume: 69 start-page: 778 year: 2015 end-page: 787 article-title: Across‐habitat comparison of diazotroph activity in the subarctic publication-title: Microbial Ecology – volume: 67 start-page: 140 year: 2013 end-page: 146 article-title: Molybdenum and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern Canada: influence of vegetative cover and seasonal variability publication-title: Soil Biology and Biochemistry – volume: 202 start-page: 765 year: 2014 end-page: 771 article-title: Is vanadium a biometal for boreal cyanolichens? publication-title: New Phytologist – volume: 6 start-page: 405 year: 2005 end-page: 413 article-title: A new type of metalloprotein: the Mo storage protein from contains a polynuclear molybdenum‐oxide cluster publication-title: ChemBioChem – year: 2016 article-title: Ecosystem nitrogen fixation throughout the snow‐free period in subarctic tundra: effects of willow and birch litter addition and warming publication-title: Global Change Biology – volume: 202 start-page: 41 year: 2009 end-page: 53 article-title: Nonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing season publication-title: Plant Ecology – volume: 74 start-page: 3471 year: 2008 end-page: 3480 article-title: Characterization of diazotrophs containing Mo‐independent nitrogenase, isolated from diverse natural environments publication-title: Applied and Environmental Microbiology – volume: 59 start-page: 1217 year: 1995 end-page: 1232 article-title: The composition of the continental crust publication-title: Geochimica et Cosmochimica Acta – volume: 69 start-page: 2744 year: 1991 end-page: 2755 article-title: Environmental regulation of nitrogen‐fixation in a high arctic lowland ecosystem publication-title: Canadian Journal of Botany – volume: 304 start-page: 1291 year: 2004 article-title: CO elicits long‐term decline in nitrogen fixation publication-title: Science – volume: 106 start-page: 395 year: 2003 end-page: 409 article-title: The role of bryophytes in carbon and nitrogen cycling publication-title: Bryologist – volume: 13 start-page: 747 year: 1983 end-page: 766 article-title: Productivity and nutrient cycling in taiga forest ecosystems publication-title: Canadian Journal of Forest Research – volume: 75 start-page: 418 year: 2000 end-page: 429 article-title: Heterotrophic nitrogen fixation in decomposing litter: patterns, mechanisms, and models publication-title: Ecology – volume: 256 start-page: 429 year: 1988 end-page: 432 article-title: Molybdenum and vanadium nitrogenase of publication-title: Biochemical Journal – volume: 90 start-page: 62 year: 2013 end-page: 69 article-title: Nitrogen fixation and methanotrophy in forest mosses along a N deposition gradient publication-title: Environmental and Experimental Botany – volume: 17 start-page: 528 year: 2011 end-page: 537 article-title: Long‐term warming and litter addition affects nitrogen fixation in a subarctic heath publication-title: Global Change Biology – volume: 162 start-page: 309 year: 2000 end-page: 314 article-title: Molybdenum fractions and mobilization kinetics in acid forest soils publication-title: Journal of Plant Nutrition and Soil Science – volume: 46 start-page: 2408 year: 2007 end-page: 2413 article-title: Towards biological supramolecular chemistry: a variety of pocket‐templated, individual metal oxide cluster nucleations in the cavity of a Mo/W‐storage protein publication-title: Angewandte Chemie International Edition – volume: 17 start-page: 2743 year: 2011 end-page: 2753 article-title: Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests publication-title: Global Change Biology – volume: 49 start-page: 11 year: 2014 end-page: 19 article-title: Lichen‐symbiotic cyanobacteria associated with have an alternative vanadium‐dependent nitrogen fixation system publication-title: European Journal of Phycology – volume: 21 start-page: 283 year: 1989 end-page: 289 article-title: Molybdenum limitation of asymbiotic nitrogen fixation in forests of Pacific Northwest America publication-title: Soil Biology and Biochemistry – volume: 1 start-page: 6 year: 2012 article-title: C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess publication-title: Ecological Processes – volume: 43 start-page: 1185 year: 1968 end-page: 1207 article-title: Acetylene–ethylene assay for N fixation–laboratory and field evaluation publication-title: Plant Physiology – volume: 42 start-page: 1204 year: 2012 end-page: 1212 article-title: Effect of chronic ammonium nitrate addition on the ectomycorrhizal community in a black spruce stand publication-title: Canadian Journal of Forest Research – volume: 213 start-page: 680 year: 2016 end-page: 689 article-title: Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current BNF estimates publication-title: New Phytologist – volume: 377 start-page: 159 year: 2014a end-page: 167 article-title: The resilience of nitrogen fixation in feather moss ( )–cyanobacteria association after a drying and rewetting cycle publication-title: Plant and Soil – volume: 12 start-page: 686 year: 2006 end-page: 702 article-title: The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic publication-title: Global Change Biology – volume: 143 start-page: 523 year: 1999 end-page: 538 article-title: Differential responses of grass and a dwarf shrub to long‐term changes in soil microbial biomass C, N and P by factorial NPK fertilizer, fungicide and labile carbon addition to a heath publication-title: New Phytologist – volume: 79 start-page: 50 year: 2002 end-page: 56 article-title: Transport of molybdate in the cyanobacterium ATCC 29413 publication-title: Archives of Microbiology – volume: 273 start-page: 25 year: 2016 end-page: 31 article-title: Phosphorus and micronutrient dynamics during gymnosperm and angiosperm litters decomposition in temperate cold forest from Eastern Canada publication-title: Geoderma – volume: 120 start-page: 570 year: 2011 end-page: 581 article-title: Response of feather moss associated N fixation and litter decomposition to variations in simulated rainfall intensity and frequency publication-title: Oikos – year: 2010 – volume: 374 start-page: 513 year: 2014b end-page: 521 article-title: Exposure to nitrogen does not eliminate N fixation in the feather moss (Brid.) Mitt publication-title: Plant and Soil – volume: 2 start-page: 42 year: 2009 end-page: 45 article-title: Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils publication-title: Nature Geosciences – volume: 41 start-page: 218 year: 2012 end-page: 230 article-title: Two decades of experimental manipulations of heaths and forest understory in the subarctic publication-title: Ambio – volume: 497 start-page: 615 year: 2013 end-page: 618 article-title: Long‐term warming restructures Arctic tundra without changing net soil carbon storage publication-title: Nature – volume: 23 start-page: 319 year: 2001 end-page: 323 article-title: Photosynthetic capacity of mosses relative to vascular plants publication-title: Journal of Bryology – volume: 55 start-page: 667 year: 2010 end-page: 676 article-title: Molybdenum–nitrogen co‐limitation in freshwater and coastal heterocystous cyanobacteria publication-title: Limnology and Oceanography – volume: 121 start-page: 317 year: 2014 end-page: 328 article-title: N ‐fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands publication-title: Biogeochemistry – volume: 10 start-page: 2198 year: 2016 end-page: 2208 article-title: Seasonal variation in H abundance and expression of cyanobacterial communities associated with boreal feather mosses publication-title: ISME – volume: 114 start-page: 135 year: 2013 end-page: 147 article-title: Relationships among phosphorus, molybdenum and free‐living nitrogen fixation in tropical rain forests: results from observational and experimental analyses publication-title: Biogeochemistry – volume: 111 start-page: 734 year: 2014 end-page: 739 article-title: Methanotrophy induces nitrogen fixation during peatland development publication-title: Proceedings of the National Academy of Sciences, USA – volume: 59 start-page: 734 year: 2011 end-page: 740 article-title: Comparative study on the effects of NaCl on selected moss and fern representatives publication-title: Australian Journal of Botany – volume: 194 start-page: 453 year: 2012 end-page: 463 article-title: The interactive effects of temperature and light on biological nitrogen fixation in boreal forests publication-title: New Phytologist – volume: 145 start-page: 743 year: 1981 end-page: 751 article-title: Molybdenum accumulation and storage in and publication-title: Journal of Bacteriology – ident: e_1_2_7_50_1 doi: 10.1007/s00248-014-0534-y – ident: e_1_2_7_42_1 doi: 10.1007/s10533-013-9835-3 – ident: e_1_2_7_40_1 doi: 10.1016/j.geoderma.2016.03.018 – ident: e_1_2_7_43_1 doi: 10.1111/j.1365-2486.2006.01263.x – ident: e_1_2_7_11_1 doi: 10.1111/nph.14166 – ident: e_1_2_7_13_1 doi: 10.1021/cr950057h – ident: e_1_2_7_31_1 doi: 10.1139/w98-219 – ident: e_1_2_7_14_1 doi: 10.1002/cbic.200400263 – ident: e_1_2_7_62_1 doi: 10.1038/ismej.2016.17 – ident: e_1_2_7_7_1 doi: 10.1071/BT11059 – ident: e_1_2_7_46_1 doi: 10.1007/s11104-013-1984-6 – ident: e_1_2_7_4_1 doi: 10.1111/j.1462-2920.2011.02440.x – ident: e_1_2_7_37_1 doi: 10.1042/bj2560429 – ident: e_1_2_7_53_1 doi: 10.1038/nature12129 – ident: e_1_2_7_28_1 doi: 10.1002/(SICI)1522-2624(199906)162:3<309::AID-JPLN309>3.0.CO;2-6 – ident: e_1_2_7_33_1 doi: 10.1007/s10533-015-0121-4 – ident: e_1_2_7_25_1 doi: 10.1021/es3018539 – ident: e_1_2_7_26_1 doi: 10.1016/j.soilbio.2013.08.018 – ident: e_1_2_7_67_1 doi: 10.1007/s10533-016-0188-6 – ident: e_1_2_7_66_1 doi: 10.1007/s00442-009-1299-8 – ident: e_1_2_7_36_1 doi: 10.1007/s13280-012-0303-4 – ident: e_1_2_7_48_1 doi: 10.1111/gcb.13418 – ident: e_1_2_7_51_1 doi: 10.1002/anie.200604858 – ident: e_1_2_7_47_1 doi: 10.1007/s11104-013-1908-5 – ident: e_1_2_7_2_1 doi: 10.1007/s10021-012-9562-y – ident: e_1_2_7_20_1 doi: 10.1104/pp.43.8.1185 – ident: e_1_2_7_38_1 doi: 10.1128/JB.145.2.743-751.1981 – volume-title: R: a language and environment for statistical computing year: 2014 ident: e_1_2_7_41_1 – ident: e_1_2_7_23_1 doi: 10.1017/CBO9781107415416 – ident: e_1_2_7_9_1 doi: 10.1139/b91-345 – ident: e_1_2_7_19_1 doi: 10.1016/0038-0717(73)90093-X – ident: e_1_2_7_17_1 doi: 10.1111/j.1365-2486.2011.02407.x – ident: e_1_2_7_55_1 doi: 10.1111/j.1365-2486.2010.02234.x – ident: e_1_2_7_27_1 doi: 10.1201/b10158 – ident: e_1_2_7_15_1 doi: 10.4319/lo.2010.55.2.0667 – ident: e_1_2_7_52_1 doi: 10.1016/0038-0717(89)90106-5 – ident: e_1_2_7_8_1 doi: 10.1007/s11258-008-9527-6 – ident: e_1_2_7_63_1 doi: 10.1016/0016-7037(95)00038-2 – ident: e_1_2_7_21_1 doi: 10.1080/09670262.2013.873143 – ident: e_1_2_7_32_1 doi: 10.1007/s10021-010-9336-3 – ident: e_1_2_7_39_1 doi: 10.1016/j.envexpbot.2013.01.004 – ident: e_1_2_7_34_1 doi: 10.1179/jbr.2001.23.4.319 – ident: e_1_2_7_58_1 doi: 10.1639/05 – ident: e_1_2_7_12_1 doi: 10.1038/nature01051 – ident: e_1_2_7_57_1 doi: 10.1007/s00203-002-0499-y – ident: e_1_2_7_54_1 doi: 10.1128/AEM.48.3.594-600.1984 – ident: e_1_2_7_60_1 doi: 10.1007/s10533-014-0019-6 – ident: e_1_2_7_16_1 doi: 10.1186/2192-1709-1-6 – ident: e_1_2_7_45_1 doi: 10.1139/x11-176 – ident: e_1_2_7_44_1 doi: 10.1016/0038-0717(81)90109-7 – ident: e_1_2_7_64_1 doi: 10.1038/ngeo589 – ident: e_1_2_7_18_1 doi: 10.1111/j.1469-8137.2012.04071.x – ident: e_1_2_7_30_1 doi: 10.1016/j.envexpbot.2012.12.006 – ident: e_1_2_7_56_1 doi: 10.1111/j.1365-2486.2006.01128.x – ident: e_1_2_7_6_1 doi: 10.1128/AEM.02694-07 – ident: e_1_2_7_5_1 doi: 10.1016/j.soilbio.2013.11.015 – ident: e_1_2_7_3_1 doi: 10.1038/ngeo366 – ident: e_1_2_7_22_1 doi: 10.1126/science.1095549 – ident: e_1_2_7_49_1 doi: 10.1111/gcb.13296 – ident: e_1_2_7_59_1 doi: 10.1139/x83-105 – ident: e_1_2_7_35_1 doi: 10.1046/j.1469-8137.1999.00479.x – ident: e_1_2_7_10_1 doi: 10.1111/nph.12777 – ident: e_1_2_7_24_1 doi: 10.1111/j.1600-0706.2010.18641.x – ident: e_1_2_7_61_1 doi: 10.2307/1939545 – ident: e_1_2_7_29_1 doi: 10.1073/pnas.1314284111 – ident: e_1_2_7_65_1 doi: 10.1371/journal.pone.0033710 |
SSID | ssj0009562 |
Score | 2.4955716 |
Snippet | Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude... Summary Biological nitrogen fixation (BNF) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine,... Biological nitrogen fixation ( BNF ) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude... Summary Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine,... * Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude... Biological nitrogen fixation (BNF) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 97 |
SubjectTerms | Acetylene - metabolism Acetylene reduction biological nitrogen fixation Biomass Boreal forests Bryophyta - physiology Cyanobacteria Cyanobacteria - drug effects Cyanobacteria - metabolism Ecological function Ecosystem Ecosystems field experimentation Field tests Growing season Hylocomium splendens latitude Molybdenum molybdenum (Mo) Molybdenum - pharmacology Mosses mosses and liverworts nitrogen Nitrogen fixation Nitrogen Fixation - drug effects Nitrogen Isotopes nitrogenase nutrients phosphorus phosphorus (P) Phosphorus - pharmacology Picea Pleurozium schreberi stable isotopes subarctic tundra Tracer techniques Tundra |
Title | Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems |
URI | https://www.jstor.org/stable/90001555 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14331 https://www.ncbi.nlm.nih.gov/pubmed/27883187 https://www.proquest.com/docview/1872132434 https://www.proquest.com/docview/1843967894 https://www.proquest.com/docview/1877843592 https://www.proquest.com/docview/2000496367 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5C8ODFd3RNlFY8eJkw29NPPKkYFiFBxMAehHH6RYLrzLKzC4knf4K_0V9idc-DRBIRDwMD8w10dVV1fzVTVQ3wQleMG7ScjDpZZcxTn2kv0d2r2Byc54GlqvfDIzE7Zu_nfL4Fr4ZamK4_xPjBLXpGWq-jg1emveDk9fIE3bxINdQxVysSoo_0QsNdQYcOzIKJed9VKGbxjG9e2ou6dMSriOZl3po2noPb8HkYcpdv8nV_szb79vsf3Rz_U6Y7cKsnpOR1Z0F3YcvX9-DGmwZJ4_l9-HLYLM6Ni_nypKodWZ40LV6rTUsWsTQq6ZU0gXxDAX_9-Fn12vaO4FqxatA8STg962CnNUGLQ2ZKMObtWki3D-D44N2nt7OsP5Qhs0yKmP5mKzl1tBDaUyW0DY56q4KfeoYrlhA-t4Y7prjwAmMlb3RuhMJARNpgNCt2YLtuav8ICDdK5FYXvNA5c8Frg7FpKMLUqVwHLyfwclBPaXuJ4sEZi3KIXHC-yjRfE3g-Qpddm46rQDtJxyNCp0pyziewNyi97F24LacKg2OkmwWbwLPxMTpf_KNS1b7ZRAzyOdzu9V8xUiKMa3o9hqZITRQCZX7YGd04SCqVwoU3zkYynevlK48-zNLN43-H7sJNGolKykXag-31auOfIM1am6fJn34DyJIjBg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CFPTiO7oxaisevEyY7enHNHhRMayaXUQS2IuM0y8S3Mws-wDjyZ_gb_SXWN3zIJFExMPAwHwDU11V3V_1VFUDPFcl4xotJ6FWlglz1CXKSXT3MjQH56lnsep9PBGjQ_Z-yqcb8LKrhWn6Q_QbbsEz4nwdHDxsSJ_x8mp-hH6ehSLqK-FE7xhQfaJnWu4K2vVgFkxM275CIY-nf_XcatQkJF5ENc8z17j07N2Ez91HNxknX3fXK71rvv_Rz_F_pboFN1pOSl41RnQbNlx1B66-rpE3nt6FL-N6dqptSJknZWXJ_Khe4rVYL8ksVEdF1ZLakxOU8NePn2WrcGcJTheLGi2U-ONvDey4Imh0SE4Jhr1NF-nlPTjce3vwZpS05zIkhkkRMuBMKYeWZkI5mgtlvKXO5N4NHcNJSwiXGs0ty7lwAsMlp1WqRY6xiDReK5ZtwWZVV-4BEK5zkRqV8UylzHqnNIanPvNDm6fKOzmAF51-CtNKFM7OmBVd8ILjVcTxGsCzHjpvOnVcBNqKSu4RKhaTcz6AnU7rRevFy2KYY3yMjDNjA3jaP0b_Cz9VysrV64BBSocrvvorRkqEcUUvx9AYrIlMoMz3G6vrP5LKPMe5N4xGtJ3L5SsmH0fxZvvfoU_g2uhgvF_sv5t8eAjXaeAtMTVpBzZXi7V7hKxrpR9H5_oN3AwnIQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VBSEuvFsWChjEgUuqrGM7tjgBZbU8uqoQlfaAFOKXWrEkq31IlBM_gd_IL2HsPNSiFiEOkSLli-TxzNjfJDNjgKeqZFyj5STU5mXCHHWJcjm6exmag_PUs1j1vj8R40P2dsqnG_C8q4Vp-kP0H9yCZ8T1Ojj43PpTTl7Nj9DNs1BDfYmJVAaT3vtAT3XcFbRrwSyYmLZthUIaT__qmc2oyUc8j2meJa5x5xldh0_dmJuEky-765XeNd__aOf4n0LdgGstIyUvGhO6CRuuugWXX9bIGk9uw-f9enaibUiYJ2VlyfyoXuK1WC_JLNRGRcWS2pOvKOCvHz_LVt3OElwsFjXaJ_HH3xrYcUXQ5JCaEgx6mx7SyztwOHr98dU4aU9lSAzLRch_M2U-tDQTylEplPGWOiO9GzqGS5YQLjWaWya5cAKDJadVqoXESCQ3XiuWbcFmVVfuLhCupUiNynimUma9UxqDU5_5oZWp8i4fwLNOPYVpJQonZ8yKLnTB-SrifA3gSQ-dN306zgNtRR33CBVLyTkfwE6n9KL14WUxlBgdI9_M2AAe94_R-8IvlbJy9TpgkNDhfq_-islzhHFFL8bQGKqJTKDM243R9YOkuZS48obZiKZzsXzF5GAcb-79O_QRXDnYGxXv30ze3YerNJCWmJe0A5urxdo9QMq10g-ja_0Gavsl2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molybdenum+and+phosphorus+limitation+of+moss-associated+nitrogen+fixation+in+boreal+ecosystems&rft.jtitle=The+New+phytologist&rft.au=Kathrin+Rousk&rft.au=Jefferson+Degboe&rft.au=Anders+Michelsen&rft.au=Robert+Bradley&rft.date=2017-04-01&rft.pub=New+Phytologist+Trust&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=214&rft.issue=1&rft.spage=97&rft.epage=107&rft_id=info:doi/10.1111%2Fnph.14331&rft.externalDocID=90001555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |