Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems

Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the avai...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 214; no. 1; pp. 97 - 107
Main Authors Rousk, Kathrin, Degboe, Jefferson, Michelsen, Anders, Bradley, Robert, Bellenger, Jean‐Philippe
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.04.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA: 15N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
AbstractList Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15 N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15 N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15 N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15 N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a N tracer technique to assess the ARA to N fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA :  N ratios increased with increasing Mo additions. These findings show that N fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
* Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. * BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a super(15)N sub(2) tracer technique to assess the ARA to N sub(2) fixation conversion ratios at our subarctic site. * BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : super(15)N sub(2) ratios increased with increasing Mo additions. * These findings show that N sub(2) fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
Biological nitrogen fixation (BNF) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a ¹⁵N₂ tracer technique to assess the ARA to N₂ fixation conversion ratios at our subarctic site. BNF was up to four‐fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : ¹⁵N₂ ratios increased with increasing Mo additions. These findings show that N₂ fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA: 15N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
Summary Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
Biological nitrogen fixation ( BNF ) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay ( ARA ) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15 N 2 tracer technique to assess the ARA to N 2 fixation conversion ratios at our subarctic site. BNF was up to four‐fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA :  15 N 2 ratios increased with increasing Mo additions. These findings show that N 2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
Summary Biological nitrogen fixation (BNF) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a 15N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four‐fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : 15N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.
Author Kathrin Rousk
Robert Bradley
Jean-Philippe Bellenger
Anders Michelsen
Jefferson Degboe
Author_xml – sequence: 1
  givenname: Kathrin
  orcidid: 0000-0003-3140-9864
  surname: Rousk
  fullname: Rousk, Kathrin
  email: kathrin.rousk@bio.ku.dk
  organization: University of Copenhagen
– sequence: 2
  givenname: Jefferson
  surname: Degboe
  fullname: Degboe, Jefferson
  organization: Université de Sherbrooke
– sequence: 3
  givenname: Anders
  surname: Michelsen
  fullname: Michelsen, Anders
  organization: University of Copenhagen
– sequence: 4
  givenname: Robert
  surname: Bradley
  fullname: Bradley, Robert
  organization: Université de Sherbrooke
– sequence: 5
  givenname: Jean‐Philippe
  surname: Bellenger
  fullname: Bellenger, Jean‐Philippe
  organization: Université de Sherbrooke
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27883187$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3DAUhUVJaSZpF_0BLYJumoUTvazHsoQmKaSPRQJd1cjydaPBliaSTTP_vprMJItAH4KLNt853HvOAdoLMQBCryk5puWdhNXNMRWc02doQYU0laZc7aEFIUxXUsjv--gg5yUhxNSSvUD7TGnNqVYL9ONzHNZtB2EesQ0dXt3EXCbNGQ9-9JOdfAw49niMOVc25-i8naDDwU8p_oSAe3-3hXzAbUxgBwwu5nWeYMwv0fPeDhle7f5DdH328er0orr8ev7p9MNl5YSStKLEWUU7xqUBpqVxfcfA6R4oCKK1lEBcW3dC1xKkJDW0hrRSE2GU61sj-CF6v_VdpXg7Q56a0WcHw2ADxDk3rNwujORS_RMtsSgteG3Yf6CCG6n0_QLvnqDLOKdQbt4YMsqZ4Bvq7Y6a2xG6ZpX8aNO6eeijAEdbwKWSd4L-EaGk2XTdlK6b-64Le_KEdbu-pmT98DfFLz_A-s_WzZdvFw-KN1vFMk8xPSpMiZPWdc1_A9lBwyU
CitedBy_id crossref_primary_10_1007_s10533_020_00671_w
crossref_primary_10_1016_j_geoderma_2024_117128
crossref_primary_10_3389_fmicb_2020_611792
crossref_primary_10_1002_ecs2_70109
crossref_primary_10_1371_journal_pone_0198860
crossref_primary_10_1016_j_scitotenv_2023_162965
crossref_primary_10_3390_agronomy14091971
crossref_primary_10_1038_s41396_020_00738_4
crossref_primary_10_1016_j_scitotenv_2020_142202
crossref_primary_10_1007_s10533_021_00761_3
crossref_primary_10_1016_j_soilbio_2023_108975
crossref_primary_10_1093_gbe_evz137
crossref_primary_10_1016_j_scitotenv_2020_137410
crossref_primary_10_1016_j_soilbio_2021_108531
crossref_primary_10_1007_s10533_022_00986_w
crossref_primary_10_1016_j_pedsph_2023_09_002
crossref_primary_10_1029_2020GB006787
crossref_primary_10_1111_nph_16611
crossref_primary_10_1007_s42729_020_00364_1
crossref_primary_10_1007_s10653_022_01302_z
crossref_primary_10_1093_aob_mcab127
crossref_primary_10_1111_gcb_15328
crossref_primary_10_3389_fmicb_2024_1407391
crossref_primary_10_1002_ecs2_2117
crossref_primary_10_1007_s10533_024_01195_3
crossref_primary_10_1007_s11104_020_04695_x
crossref_primary_10_1016_j_marpolbul_2021_112126
crossref_primary_10_7717_peerj_11985
crossref_primary_10_1186_s40168_021_01001_4
crossref_primary_10_1093_jxb_erac127
crossref_primary_10_1639_0007_2745_120_3_347
crossref_primary_10_1016_j_scitotenv_2018_02_192
crossref_primary_10_1016_j_envres_2025_121416
crossref_primary_10_1007_s10533_017_0341_x
crossref_primary_10_1038_ismej_2017_134
crossref_primary_10_1007_s11258_018_0838_y
crossref_primary_10_1016_j_agee_2020_106987
crossref_primary_10_1007_s10021_022_00804_2
crossref_primary_10_1016_j_ecolind_2022_108806
crossref_primary_10_1093_jxb_erac091
crossref_primary_10_1002_ecy_3211
crossref_primary_10_1007_s11104_020_04492_6
crossref_primary_10_1139_cjfr_2024_0017
crossref_primary_10_1016_j_crmicr_2024_100284
crossref_primary_10_1016_j_scitotenv_2018_08_318
crossref_primary_10_1093_jpe_rtaa050
crossref_primary_10_1111_1462_2920_16555
crossref_primary_10_1016_j_geoderma_2023_116410
crossref_primary_10_1016_j_soilbio_2018_05_002
crossref_primary_10_1038_s41564_023_01573_x
crossref_primary_10_1002_ecy_2938
crossref_primary_10_1111_gcb_14705
crossref_primary_10_1007_s42729_022_00913_w
crossref_primary_10_1007_s10533_017_0393_y
crossref_primary_10_1111_1365_2745_13881
crossref_primary_10_1371_journal_pone_0228383
crossref_primary_10_1111_1462_2920_13857
crossref_primary_10_1007_s10933_022_00265_6
crossref_primary_10_1038_s41598_022_24860_9
crossref_primary_10_1007_s13199_023_00930_y
crossref_primary_10_1073_pnas_1913314116
crossref_primary_10_1007_s10533_020_00666_7
crossref_primary_10_3390_plants12051164
crossref_primary_10_1016_j_soilbio_2017_11_024
crossref_primary_10_5194_soil_9_623_2023
crossref_primary_10_1007_s10021_020_00534_3
crossref_primary_10_1016_j_actao_2021_103796
crossref_primary_10_1016_j_chemgeo_2022_121075
crossref_primary_10_1016_j_scitotenv_2022_155761
crossref_primary_10_1007_s11356_021_16191_5
crossref_primary_10_1093_molbev_msy029
crossref_primary_10_1111_1365_2435_14088
crossref_primary_10_1111_gcb_17401
crossref_primary_10_1021_acs_chemrev_9b00613
crossref_primary_10_1186_s13568_020_00994_9
crossref_primary_10_1021_acs_est_2c03213
crossref_primary_10_3390_plants12071443
crossref_primary_10_1007_s13204_018_00939_6
Cites_doi 10.1007/s00248-014-0534-y
10.1007/s10533-013-9835-3
10.1016/j.geoderma.2016.03.018
10.1111/j.1365-2486.2006.01263.x
10.1111/nph.14166
10.1021/cr950057h
10.1139/w98-219
10.1002/cbic.200400263
10.1038/ismej.2016.17
10.1071/BT11059
10.1007/s11104-013-1984-6
10.1111/j.1462-2920.2011.02440.x
10.1042/bj2560429
10.1038/nature12129
10.1002/(SICI)1522-2624(199906)162:3<309::AID-JPLN309>3.0.CO;2-6
10.1007/s10533-015-0121-4
10.1021/es3018539
10.1016/j.soilbio.2013.08.018
10.1007/s10533-016-0188-6
10.1007/s00442-009-1299-8
10.1007/s13280-012-0303-4
10.1111/gcb.13418
10.1002/anie.200604858
10.1007/s11104-013-1908-5
10.1007/s10021-012-9562-y
10.1104/pp.43.8.1185
10.1128/JB.145.2.743-751.1981
10.1017/CBO9781107415416
10.1139/b91-345
10.1016/0038-0717(73)90093-X
10.1111/j.1365-2486.2011.02407.x
10.1111/j.1365-2486.2010.02234.x
10.1201/b10158
10.4319/lo.2010.55.2.0667
10.1016/0038-0717(89)90106-5
10.1007/s11258-008-9527-6
10.1016/0016-7037(95)00038-2
10.1080/09670262.2013.873143
10.1007/s10021-010-9336-3
10.1016/j.envexpbot.2013.01.004
10.1179/jbr.2001.23.4.319
10.1639/05
10.1038/nature01051
10.1007/s00203-002-0499-y
10.1128/AEM.48.3.594-600.1984
10.1007/s10533-014-0019-6
10.1186/2192-1709-1-6
10.1139/x11-176
10.1016/0038-0717(81)90109-7
10.1038/ngeo589
10.1111/j.1469-8137.2012.04071.x
10.1016/j.envexpbot.2012.12.006
10.1111/j.1365-2486.2006.01128.x
10.1128/AEM.02694-07
10.1016/j.soilbio.2013.11.015
10.1038/ngeo366
10.1126/science.1095549
10.1111/gcb.13296
10.1139/x83-105
10.1046/j.1469-8137.1999.00479.x
10.1111/nph.12777
10.1111/j.1600-0706.2010.18641.x
10.2307/1939545
10.1073/pnas.1314284111
10.1371/journal.pone.0033710
ContentType Journal Article
Copyright 2016 New Phytologist Trust
2016 The Authors. New Phytologist © 2016 New Phytologist Trust
2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Copyright © 2017 New Phytologist Trust
Copyright_xml – notice: 2016 New Phytologist Trust
– notice: 2016 The Authors. New Phytologist © 2016 New Phytologist Trust
– notice: 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
– notice: Copyright © 2017 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.14331
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 107
ExternalDocumentID 4317212771
27883187
10_1111_nph_14331
NPH14331
90001555
Genre article
Journal Article
GrantInformation_xml – fundername: Canadian Research Chair in Boreal Biogeochemistry
  funderid: CRC‐950‐230570
– fundername: Danish National Research Foundation
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 305985129
– fundername: FP7 Marie Curie Actions – COFUND
  funderid: DFF – 1325‐00025
– fundername: Danish Council for Independent Research
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4761-10ca71d2369e2869cfd2ec8fe1e408866e0cb5d4856e6605eb90b680497cfb943
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:33:33 EDT 2025
Fri Jul 11 15:50:00 EDT 2025
Fri Jul 11 09:36:08 EDT 2025
Fri Jul 25 12:08:00 EDT 2025
Wed Feb 19 02:43:04 EST 2025
Thu Apr 24 23:00:06 EDT 2025
Tue Jul 01 03:09:25 EDT 2025
Wed Jan 22 16:54:33 EST 2025
Thu Jul 03 22:32:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords boreal forests
cyanobacteria
subarctic tundra
biological nitrogen fixation
molybdenum (Mo)
Hylocomium splendens
Pleurozium schreberi
phosphorus (P)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-10ca71d2369e2869cfd2ec8fe1e408866e0cb5d4856e6605eb90b680497cfb943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3140-9864
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14331
PMID 27883187
PQID 1872132434
PQPubID 2026848
PageCount 11
ParticipantIDs proquest_miscellaneous_2000496367
proquest_miscellaneous_1877843592
proquest_miscellaneous_1843967894
proquest_journals_1872132434
pubmed_primary_27883187
crossref_primary_10_1111_nph_14331
crossref_citationtrail_10_1111_nph_14331
wiley_primary_10_1111_nph_14331_NPH14331
jstor_primary_90001555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170401
April 2017
2017-04-00
2017-Apr
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 4
  year: 2017
  text: 20170401
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2017
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2010; 55
2010; 13
1981; 145
2013; 67
2009; 160
1999; 45
2014a; 377
2014; 69
2011; 13
2008; 74
2011; 59
2012; 15
2011; 17
1983; 13
1988; 256
2000; 162
2013; 114
2014; 121
2009; 202
2014; 202
2016; 273
2011; 120
1989; 21
2006; 12
1984; 48
2010
1995; 59
2015; 125
2013; 89
2002; 79
2014; 49
2016; 10
2013; 90
1999; 143
1996; 96
2002; 419
2016; 127
2014; 111
2001; 23
2004; 304
1968; 43
2007; 13
2012; 194
2015; 69
1991; 69
2003; 106
2012; 1
1980; 13
2000; 75
2013; 497
2005; 6
2016
2014
2016; 213
1973; 5
2009; 2
2012; 46
2012; 7
2007; 46
2012; 42
2012; 41
2014b; 374
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
R Core Team (e_1_2_7_41_1) 2014
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 69
  start-page: 413
  year: 2014
  end-page: 420
  article-title: Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N fixing bacteria in soils
  publication-title: Soil Biology and Biochemistry
– volume: 2
  start-page: 625
  year: 2009
  end-page: 629
  article-title: Storage and bioavailability of molybdenum in soils increased by organic matter complexation
  publication-title: Nature Geoscience
– volume: 13
  start-page: 28
  year: 2007
  end-page: 39
  article-title: Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem
  publication-title: Global Change Biology
– volume: 7
  start-page: e33710
  year: 2012
  article-title: Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests
  publication-title: PLoS One
– volume: 13
  start-page: 1395
  year: 2011
  end-page: 1411
  article-title: Essential metals for nitrogen fixation in a free‐living N‐fixing bacterium: chelation, homeostasis and high use efficiency
  publication-title: Environmental Microbiology
– volume: 45
  start-page: 223
  year: 1999
  end-page: 229
  article-title: Conversion factor between acetylene reduction and nitrogen fixation in free‐living cyanobacteria from high arctic habitats
  publication-title: Canadian Journal of Microbiology
– volume: 46
  start-page: 8667
  year: 2012
  end-page: 8671
  article-title: Short‐term N fixation kinetics in a moss‐associated cyanobacteria
  publication-title: Environmental Science and Technology
– volume: 89
  start-page: 44
  year: 2013
  end-page: 50
  article-title: Fen mosses can tolerate some saline conditions found in oil sands process water
  publication-title: Environmental and Experimental Botany
– volume: 5
  start-page: 47
  year: 1973
  end-page: 81
  article-title: Applications of the acetylene–ethylene assay for measurement of nitrogen fixation
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 83
  year: 1980
  end-page: 85
  article-title: Comparative C H reduction and N fixation in deciduous wood litter
  publication-title: Soil Biology and Biochemistry
– volume: 15
  start-page: 986
  year: 2012
  end-page: 998
  article-title: N fixation in feather mosses is a sensitive indicator of N deposition in boreal forests
  publication-title: Ecosystems
– volume: 127
  start-page: 189
  year: 2016
  end-page: 198
  article-title: Alternative nitrogenase activity in the environment and nitrogen cycle implications
  publication-title: Biogeochemistry
– volume: 125
  start-page: 167
  year: 2015
  end-page: 183
  article-title: Soil organic matter regulates molybdenum storage and mobility in forests
  publication-title: Biogeochemistry
– volume: 48
  start-page: 594
  year: 1984
  end-page: 600
  article-title: Effects of abiotic factors on acetylene reduction by cyanobacteria epiphytic on moss at a subantarctic island
  publication-title: Applied and Environmental Microbiology
– volume: 96
  start-page: 3013
  year: 1996
  end-page: 3030
  article-title: Structure–function relationships of alternative nitrogenase
  publication-title: Chemical Review
– volume: 160
  start-page: 309
  year: 2009
  end-page: 319
  article-title: Nitrogen fixation in mixed moss communities
  publication-title: Oecologia
– volume: 13
  start-page: 612
  year: 2010
  end-page: 627
  article-title: The bryosphere: an integral and influential component of the earth's biosphere
  publication-title: Ecosystems
– volume: 419
  start-page: 917
  year: 2002
  end-page: 919
  article-title: Quantifying nitrogen‐fixation in feather moss carpets of boreal forests
  publication-title: Nature
– year: 2014
– volume: 22
  start-page: 4150
  year: 2016
  end-page: 4161
  article-title: Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments
  publication-title: Global Change Biology
– volume: 69
  start-page: 778
  year: 2015
  end-page: 787
  article-title: Across‐habitat comparison of diazotroph activity in the subarctic
  publication-title: Microbial Ecology
– volume: 67
  start-page: 140
  year: 2013
  end-page: 146
  article-title: Molybdenum and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern Canada: influence of vegetative cover and seasonal variability
  publication-title: Soil Biology and Biochemistry
– volume: 202
  start-page: 765
  year: 2014
  end-page: 771
  article-title: Is vanadium a biometal for boreal cyanolichens?
  publication-title: New Phytologist
– volume: 6
  start-page: 405
  year: 2005
  end-page: 413
  article-title: A new type of metalloprotein: the Mo storage protein from contains a polynuclear molybdenum‐oxide cluster
  publication-title: ChemBioChem
– year: 2016
  article-title: Ecosystem nitrogen fixation throughout the snow‐free period in subarctic tundra: effects of willow and birch litter addition and warming
  publication-title: Global Change Biology
– volume: 202
  start-page: 41
  year: 2009
  end-page: 53
  article-title: Nonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing season
  publication-title: Plant Ecology
– volume: 74
  start-page: 3471
  year: 2008
  end-page: 3480
  article-title: Characterization of diazotrophs containing Mo‐independent nitrogenase, isolated from diverse natural environments
  publication-title: Applied and Environmental Microbiology
– volume: 59
  start-page: 1217
  year: 1995
  end-page: 1232
  article-title: The composition of the continental crust
  publication-title: Geochimica et Cosmochimica Acta
– volume: 69
  start-page: 2744
  year: 1991
  end-page: 2755
  article-title: Environmental regulation of nitrogen‐fixation in a high arctic lowland ecosystem
  publication-title: Canadian Journal of Botany
– volume: 304
  start-page: 1291
  year: 2004
  article-title: CO elicits long‐term decline in nitrogen fixation
  publication-title: Science
– volume: 106
  start-page: 395
  year: 2003
  end-page: 409
  article-title: The role of bryophytes in carbon and nitrogen cycling
  publication-title: Bryologist
– volume: 13
  start-page: 747
  year: 1983
  end-page: 766
  article-title: Productivity and nutrient cycling in taiga forest ecosystems
  publication-title: Canadian Journal of Forest Research
– volume: 75
  start-page: 418
  year: 2000
  end-page: 429
  article-title: Heterotrophic nitrogen fixation in decomposing litter: patterns, mechanisms, and models
  publication-title: Ecology
– volume: 256
  start-page: 429
  year: 1988
  end-page: 432
  article-title: Molybdenum and vanadium nitrogenase of
  publication-title: Biochemical Journal
– volume: 90
  start-page: 62
  year: 2013
  end-page: 69
  article-title: Nitrogen fixation and methanotrophy in forest mosses along a N deposition gradient
  publication-title: Environmental and Experimental Botany
– volume: 17
  start-page: 528
  year: 2011
  end-page: 537
  article-title: Long‐term warming and litter addition affects nitrogen fixation in a subarctic heath
  publication-title: Global Change Biology
– volume: 162
  start-page: 309
  year: 2000
  end-page: 314
  article-title: Molybdenum fractions and mobilization kinetics in acid forest soils
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 46
  start-page: 2408
  year: 2007
  end-page: 2413
  article-title: Towards biological supramolecular chemistry: a variety of pocket‐templated, individual metal oxide cluster nucleations in the cavity of a Mo/W‐storage protein
  publication-title: Angewandte Chemie International Edition
– volume: 17
  start-page: 2743
  year: 2011
  end-page: 2753
  article-title: Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests
  publication-title: Global Change Biology
– volume: 49
  start-page: 11
  year: 2014
  end-page: 19
  article-title: Lichen‐symbiotic cyanobacteria associated with have an alternative vanadium‐dependent nitrogen fixation system
  publication-title: European Journal of Phycology
– volume: 21
  start-page: 283
  year: 1989
  end-page: 289
  article-title: Molybdenum limitation of asymbiotic nitrogen fixation in forests of Pacific Northwest America
  publication-title: Soil Biology and Biochemistry
– volume: 1
  start-page: 6
  year: 2012
  article-title: C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess
  publication-title: Ecological Processes
– volume: 43
  start-page: 1185
  year: 1968
  end-page: 1207
  article-title: Acetylene–ethylene assay for N fixation–laboratory and field evaluation
  publication-title: Plant Physiology
– volume: 42
  start-page: 1204
  year: 2012
  end-page: 1212
  article-title: Effect of chronic ammonium nitrate addition on the ectomycorrhizal community in a black spruce stand
  publication-title: Canadian Journal of Forest Research
– volume: 213
  start-page: 680
  year: 2016
  end-page: 689
  article-title: Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current BNF estimates
  publication-title: New Phytologist
– volume: 377
  start-page: 159
  year: 2014a
  end-page: 167
  article-title: The resilience of nitrogen fixation in feather moss ( )–cyanobacteria association after a drying and rewetting cycle
  publication-title: Plant and Soil
– volume: 12
  start-page: 686
  year: 2006
  end-page: 702
  article-title: The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic
  publication-title: Global Change Biology
– volume: 143
  start-page: 523
  year: 1999
  end-page: 538
  article-title: Differential responses of grass and a dwarf shrub to long‐term changes in soil microbial biomass C, N and P by factorial NPK fertilizer, fungicide and labile carbon addition to a heath
  publication-title: New Phytologist
– volume: 79
  start-page: 50
  year: 2002
  end-page: 56
  article-title: Transport of molybdate in the cyanobacterium ATCC 29413
  publication-title: Archives of Microbiology
– volume: 273
  start-page: 25
  year: 2016
  end-page: 31
  article-title: Phosphorus and micronutrient dynamics during gymnosperm and angiosperm litters decomposition in temperate cold forest from Eastern Canada
  publication-title: Geoderma
– volume: 120
  start-page: 570
  year: 2011
  end-page: 581
  article-title: Response of feather moss associated N fixation and litter decomposition to variations in simulated rainfall intensity and frequency
  publication-title: Oikos
– year: 2010
– volume: 374
  start-page: 513
  year: 2014b
  end-page: 521
  article-title: Exposure to nitrogen does not eliminate N fixation in the feather moss (Brid.) Mitt
  publication-title: Plant and Soil
– volume: 2
  start-page: 42
  year: 2009
  end-page: 45
  article-title: Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils
  publication-title: Nature Geosciences
– volume: 41
  start-page: 218
  year: 2012
  end-page: 230
  article-title: Two decades of experimental manipulations of heaths and forest understory in the subarctic
  publication-title: Ambio
– volume: 497
  start-page: 615
  year: 2013
  end-page: 618
  article-title: Long‐term warming restructures Arctic tundra without changing net soil carbon storage
  publication-title: Nature
– volume: 23
  start-page: 319
  year: 2001
  end-page: 323
  article-title: Photosynthetic capacity of mosses relative to vascular plants
  publication-title: Journal of Bryology
– volume: 55
  start-page: 667
  year: 2010
  end-page: 676
  article-title: Molybdenum–nitrogen co‐limitation in freshwater and coastal heterocystous cyanobacteria
  publication-title: Limnology and Oceanography
– volume: 121
  start-page: 317
  year: 2014
  end-page: 328
  article-title: N ‐fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands
  publication-title: Biogeochemistry
– volume: 10
  start-page: 2198
  year: 2016
  end-page: 2208
  article-title: Seasonal variation in H abundance and expression of cyanobacterial communities associated with boreal feather mosses
  publication-title: ISME
– volume: 114
  start-page: 135
  year: 2013
  end-page: 147
  article-title: Relationships among phosphorus, molybdenum and free‐living nitrogen fixation in tropical rain forests: results from observational and experimental analyses
  publication-title: Biogeochemistry
– volume: 111
  start-page: 734
  year: 2014
  end-page: 739
  article-title: Methanotrophy induces nitrogen fixation during peatland development
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 59
  start-page: 734
  year: 2011
  end-page: 740
  article-title: Comparative study on the effects of NaCl on selected moss and fern representatives
  publication-title: Australian Journal of Botany
– volume: 194
  start-page: 453
  year: 2012
  end-page: 463
  article-title: The interactive effects of temperature and light on biological nitrogen fixation in boreal forests
  publication-title: New Phytologist
– volume: 145
  start-page: 743
  year: 1981
  end-page: 751
  article-title: Molybdenum accumulation and storage in and
  publication-title: Journal of Bacteriology
– ident: e_1_2_7_50_1
  doi: 10.1007/s00248-014-0534-y
– ident: e_1_2_7_42_1
  doi: 10.1007/s10533-013-9835-3
– ident: e_1_2_7_40_1
  doi: 10.1016/j.geoderma.2016.03.018
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-2486.2006.01263.x
– ident: e_1_2_7_11_1
  doi: 10.1111/nph.14166
– ident: e_1_2_7_13_1
  doi: 10.1021/cr950057h
– ident: e_1_2_7_31_1
  doi: 10.1139/w98-219
– ident: e_1_2_7_14_1
  doi: 10.1002/cbic.200400263
– ident: e_1_2_7_62_1
  doi: 10.1038/ismej.2016.17
– ident: e_1_2_7_7_1
  doi: 10.1071/BT11059
– ident: e_1_2_7_46_1
  doi: 10.1007/s11104-013-1984-6
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1462-2920.2011.02440.x
– ident: e_1_2_7_37_1
  doi: 10.1042/bj2560429
– ident: e_1_2_7_53_1
  doi: 10.1038/nature12129
– ident: e_1_2_7_28_1
  doi: 10.1002/(SICI)1522-2624(199906)162:3<309::AID-JPLN309>3.0.CO;2-6
– ident: e_1_2_7_33_1
  doi: 10.1007/s10533-015-0121-4
– ident: e_1_2_7_25_1
  doi: 10.1021/es3018539
– ident: e_1_2_7_26_1
  doi: 10.1016/j.soilbio.2013.08.018
– ident: e_1_2_7_67_1
  doi: 10.1007/s10533-016-0188-6
– ident: e_1_2_7_66_1
  doi: 10.1007/s00442-009-1299-8
– ident: e_1_2_7_36_1
  doi: 10.1007/s13280-012-0303-4
– ident: e_1_2_7_48_1
  doi: 10.1111/gcb.13418
– ident: e_1_2_7_51_1
  doi: 10.1002/anie.200604858
– ident: e_1_2_7_47_1
  doi: 10.1007/s11104-013-1908-5
– ident: e_1_2_7_2_1
  doi: 10.1007/s10021-012-9562-y
– ident: e_1_2_7_20_1
  doi: 10.1104/pp.43.8.1185
– ident: e_1_2_7_38_1
  doi: 10.1128/JB.145.2.743-751.1981
– volume-title: R: a language and environment for statistical computing
  year: 2014
  ident: e_1_2_7_41_1
– ident: e_1_2_7_23_1
  doi: 10.1017/CBO9781107415416
– ident: e_1_2_7_9_1
  doi: 10.1139/b91-345
– ident: e_1_2_7_19_1
  doi: 10.1016/0038-0717(73)90093-X
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1365-2486.2011.02407.x
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1365-2486.2010.02234.x
– ident: e_1_2_7_27_1
  doi: 10.1201/b10158
– ident: e_1_2_7_15_1
  doi: 10.4319/lo.2010.55.2.0667
– ident: e_1_2_7_52_1
  doi: 10.1016/0038-0717(89)90106-5
– ident: e_1_2_7_8_1
  doi: 10.1007/s11258-008-9527-6
– ident: e_1_2_7_63_1
  doi: 10.1016/0016-7037(95)00038-2
– ident: e_1_2_7_21_1
  doi: 10.1080/09670262.2013.873143
– ident: e_1_2_7_32_1
  doi: 10.1007/s10021-010-9336-3
– ident: e_1_2_7_39_1
  doi: 10.1016/j.envexpbot.2013.01.004
– ident: e_1_2_7_34_1
  doi: 10.1179/jbr.2001.23.4.319
– ident: e_1_2_7_58_1
  doi: 10.1639/05
– ident: e_1_2_7_12_1
  doi: 10.1038/nature01051
– ident: e_1_2_7_57_1
  doi: 10.1007/s00203-002-0499-y
– ident: e_1_2_7_54_1
  doi: 10.1128/AEM.48.3.594-600.1984
– ident: e_1_2_7_60_1
  doi: 10.1007/s10533-014-0019-6
– ident: e_1_2_7_16_1
  doi: 10.1186/2192-1709-1-6
– ident: e_1_2_7_45_1
  doi: 10.1139/x11-176
– ident: e_1_2_7_44_1
  doi: 10.1016/0038-0717(81)90109-7
– ident: e_1_2_7_64_1
  doi: 10.1038/ngeo589
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1469-8137.2012.04071.x
– ident: e_1_2_7_30_1
  doi: 10.1016/j.envexpbot.2012.12.006
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1365-2486.2006.01128.x
– ident: e_1_2_7_6_1
  doi: 10.1128/AEM.02694-07
– ident: e_1_2_7_5_1
  doi: 10.1016/j.soilbio.2013.11.015
– ident: e_1_2_7_3_1
  doi: 10.1038/ngeo366
– ident: e_1_2_7_22_1
  doi: 10.1126/science.1095549
– ident: e_1_2_7_49_1
  doi: 10.1111/gcb.13296
– ident: e_1_2_7_59_1
  doi: 10.1139/x83-105
– ident: e_1_2_7_35_1
  doi: 10.1046/j.1469-8137.1999.00479.x
– ident: e_1_2_7_10_1
  doi: 10.1111/nph.12777
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1600-0706.2010.18641.x
– ident: e_1_2_7_61_1
  doi: 10.2307/1939545
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.1314284111
– ident: e_1_2_7_65_1
  doi: 10.1371/journal.pone.0033710
SSID ssj0009562
Score 2.4955716
Snippet Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude...
Summary Biological nitrogen fixation (BNF) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine,...
Biological nitrogen fixation ( BNF ) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude...
Summary Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine,...
* Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude...
Biological nitrogen fixation (BNF) performed by moss‐associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high‐latitude...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 97
SubjectTerms Acetylene - metabolism
Acetylene reduction
biological nitrogen fixation
Biomass
Boreal forests
Bryophyta - physiology
Cyanobacteria
Cyanobacteria - drug effects
Cyanobacteria - metabolism
Ecological function
Ecosystem
Ecosystems
field experimentation
Field tests
Growing season
Hylocomium splendens
latitude
Molybdenum
molybdenum (Mo)
Molybdenum - pharmacology
Mosses
mosses and liverworts
nitrogen
Nitrogen fixation
Nitrogen Fixation - drug effects
Nitrogen Isotopes
nitrogenase
nutrients
phosphorus
phosphorus (P)
Phosphorus - pharmacology
Picea
Pleurozium schreberi
stable isotopes
subarctic tundra
Tracer techniques
Tundra
Title Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems
URI https://www.jstor.org/stable/90001555
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14331
https://www.ncbi.nlm.nih.gov/pubmed/27883187
https://www.proquest.com/docview/1872132434
https://www.proquest.com/docview/1843967894
https://www.proquest.com/docview/1877843592
https://www.proquest.com/docview/2000496367
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5C8ODFd3RNlFY8eJkw29NPPKkYFiFBxMAehHH6RYLrzLKzC4knf4K_0V9idc-DRBIRDwMD8w10dVV1fzVTVQ3wQleMG7ScjDpZZcxTn2kv0d2r2Byc54GlqvfDIzE7Zu_nfL4Fr4ZamK4_xPjBLXpGWq-jg1emveDk9fIE3bxINdQxVysSoo_0QsNdQYcOzIKJed9VKGbxjG9e2ou6dMSriOZl3po2noPb8HkYcpdv8nV_szb79vsf3Rz_U6Y7cKsnpOR1Z0F3YcvX9-DGmwZJ4_l9-HLYLM6Ni_nypKodWZ40LV6rTUsWsTQq6ZU0gXxDAX_9-Fn12vaO4FqxatA8STg962CnNUGLQ2ZKMObtWki3D-D44N2nt7OsP5Qhs0yKmP5mKzl1tBDaUyW0DY56q4KfeoYrlhA-t4Y7prjwAmMlb3RuhMJARNpgNCt2YLtuav8ICDdK5FYXvNA5c8Frg7FpKMLUqVwHLyfwclBPaXuJ4sEZi3KIXHC-yjRfE3g-Qpddm46rQDtJxyNCp0pyziewNyi97F24LacKg2OkmwWbwLPxMTpf_KNS1b7ZRAzyOdzu9V8xUiKMa3o9hqZITRQCZX7YGd04SCqVwoU3zkYynevlK48-zNLN43-H7sJNGolKykXag-31auOfIM1am6fJn34DyJIjBg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CFPTiO7oxaisevEyY7enHNHhRMayaXUQS2IuM0y8S3Mws-wDjyZ_gb_SXWN3zIJFExMPAwHwDU11V3V_1VFUDPFcl4xotJ6FWlglz1CXKSXT3MjQH56lnsep9PBGjQ_Z-yqcb8LKrhWn6Q_QbbsEz4nwdHDxsSJ_x8mp-hH6ehSLqK-FE7xhQfaJnWu4K2vVgFkxM275CIY-nf_XcatQkJF5ENc8z17j07N2Ez91HNxknX3fXK71rvv_Rz_F_pboFN1pOSl41RnQbNlx1B66-rpE3nt6FL-N6dqptSJknZWXJ_Khe4rVYL8ksVEdF1ZLakxOU8NePn2WrcGcJTheLGi2U-ONvDey4Imh0SE4Jhr1NF-nlPTjce3vwZpS05zIkhkkRMuBMKYeWZkI5mgtlvKXO5N4NHcNJSwiXGs0ty7lwAsMlp1WqRY6xiDReK5ZtwWZVV-4BEK5zkRqV8UylzHqnNIanPvNDm6fKOzmAF51-CtNKFM7OmBVd8ILjVcTxGsCzHjpvOnVcBNqKSu4RKhaTcz6AnU7rRevFy2KYY3yMjDNjA3jaP0b_Cz9VysrV64BBSocrvvorRkqEcUUvx9AYrIlMoMz3G6vrP5LKPMe5N4xGtJ3L5SsmH0fxZvvfoU_g2uhgvF_sv5t8eAjXaeAtMTVpBzZXi7V7hKxrpR9H5_oN3AwnIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VBSEuvFsWChjEgUuqrGM7tjgBZbU8uqoQlfaAFOKXWrEkq31IlBM_gd_IL2HsPNSiFiEOkSLli-TxzNjfJDNjgKeqZFyj5STU5mXCHHWJcjm6exmag_PUs1j1vj8R40P2dsqnG_C8q4Vp-kP0H9yCZ8T1Ojj43PpTTl7Nj9DNs1BDfYmJVAaT3vtAT3XcFbRrwSyYmLZthUIaT__qmc2oyUc8j2meJa5x5xldh0_dmJuEky-765XeNd__aOf4n0LdgGstIyUvGhO6CRuuugWXX9bIGk9uw-f9enaibUiYJ2VlyfyoXuK1WC_JLNRGRcWS2pOvKOCvHz_LVt3OElwsFjXaJ_HH3xrYcUXQ5JCaEgx6mx7SyztwOHr98dU4aU9lSAzLRch_M2U-tDQTylEplPGWOiO9GzqGS5YQLjWaWya5cAKDJadVqoXESCQ3XiuWbcFmVVfuLhCupUiNynimUma9UxqDU5_5oZWp8i4fwLNOPYVpJQonZ8yKLnTB-SrifA3gSQ-dN306zgNtRR33CBVLyTkfwE6n9KL14WUxlBgdI9_M2AAe94_R-8IvlbJy9TpgkNDhfq_-islzhHFFL8bQGKqJTKDM243R9YOkuZS48obZiKZzsXzF5GAcb-79O_QRXDnYGxXv30ze3YerNJCWmJe0A5urxdo9QMq10g-ja_0Gavsl2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molybdenum+and+phosphorus+limitation+of+moss-associated+nitrogen+fixation+in+boreal+ecosystems&rft.jtitle=The+New+phytologist&rft.au=Kathrin+Rousk&rft.au=Jefferson+Degboe&rft.au=Anders+Michelsen&rft.au=Robert+Bradley&rft.date=2017-04-01&rft.pub=New+Phytologist+Trust&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=214&rft.issue=1&rft.spage=97&rft.epage=107&rft_id=info:doi/10.1111%2Fnph.14331&rft.externalDocID=90001555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon