Fenton‐Chemistry‐Mediated Radical Polymerization
In this review, the power of a classical chemical reaction, the Fenton reaction for initiating radical polymerizations, is demonstrated. The reaction between the Fenton reagents (i.e., Fe2+ and H2O2) generates highly reactive hydroxyl radicals, which can act as radical initiators for the polymerizat...
Saved in:
Published in | Macromolecular rapid communications. Vol. 40; no. 18; pp. e1900220 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this review, the power of a classical chemical reaction, the Fenton reaction for initiating radical polymerizations, is demonstrated. The reaction between the Fenton reagents (i.e., Fe2+ and H2O2) generates highly reactive hydroxyl radicals, which can act as radical initiators for the polymerization of vinyl monomers. Since the Fenton reaction is fast, easy to set up, cheap, and biocompatible, this unique chemistry is widely employed in various polymer synthesis studies via free radical polymerization or reversible addition–fragmentation chain transfer polymerization, and is utilized in a wide range of applications, such as the fabrication of biomaterials, hydrogels, and core‐shell particles. Biologically activated Fenton‐mediated radical polymerization, which can be performed in aerobic environments, are particularly useful for applications in biomedical systems.
The use of Fenton chemistry for traditional free radical and reversible addition–fragmentation chain transfer (RAFT) polymerizations have shown great promise in the synthesis of different types of polymers and the fabrication of biomaterials. Herein, the power of the Fenton reaction for the initiation of various radical polymerizations are discussed, and potential applications of the resulting materials are highlighted. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 1022-1336 1521-3927 1521-3927 |
DOI: | 10.1002/marc.201900220 |