A hybrid planning strategy for stereotactic body radiation therapy of early stage non‐small‐cell lung cancer
Currently dynamic conformal arcs (DCA) and volumetric modulated arc therapy (VMAT) are two popular planning techniques to treat lung stereotactic body radiation therapy (SBRT) patients. Of the two, DCA has advantages in terms of multi‐leaf collimator (MLC) motion, positioning error, and delivery eff...
Saved in:
Published in | Journal of applied clinical medical physics Vol. 19; no. 6; pp. 117 - 123 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.11.2018
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Currently dynamic conformal arcs (DCA) and volumetric modulated arc therapy (VMAT) are two popular planning techniques to treat lung stereotactic body radiation therapy (SBRT) patients. Of the two, DCA has advantages in terms of multi‐leaf collimator (MLC) motion, positioning error, and delivery efficiency. However, VMAT is often the choice when critical organ sparing becomes important. We developed a hybrid strategy to incorporate DCA component into VMAT planning, results were compared with DCA and VMAT plans. Four planning techniques were retrospectively simulated for 10 lung SBRT patients: DCA, Hybrid‐DCA (2/3 of the doses from DCA beams), Hybrid‐VMAT (2/3 of the doses from VMAT beams) and VMAT. Plan complexity was accessed by modulation complexity score (MCS). Conformity index (CI) for the planning target volume (PTV), V20 and V5 for the lung, V30 for the chestwall, and maximum dose to all other critical organs were calculated. Plans were compared with regard to these metrics and measured agreement between the planned and delivered doses. DCA technique did not result in acceptable plan quality due to target location for five patients. Hybrid‐DCA produced one unacceptable plan, and Hybrid‐VMAT and VMAT produced no unacceptable plans. The CI improved with increasing VMAT usage, as did the dose sparing to critical structures. Compared to the VMAT technique, a total MU reduction of 14%, 25% and 37% were found for Hybrid‐VMAT, Hybrid‐DCA and DCA techniques for 54 Gy patient group, and 9%, 23% and 34% for 50 Gy patient group, suggesting improvement in delivery efficiency with increasing DCA usage. No significant variations of plan complexity were observed between Hybrid‐DCA and Hybrid‐VMAT (P = 0.46 from Mann–Whitney U‐test), but significant differences were found among DCA, Hybrid and VMAT (P < 0.05). Better agreements between the planned and delivered doses were found with more DCA contributions. By adding DCA components to VMAT planning, hybrid technique offers comparable dosimetry to full VMAT, while increasing delivery efficiency and minimizing MLC complexity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1526-9914 1526-9914 |
DOI: | 10.1002/acm2.12450 |