Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

In this contribution a strategy is shown to covalently immobilize gold nanoparticles (AuNPs) onto vesicle bilayers with the aim of using this nanomaterial as platform for the future design of immunosensors. A novel methodology for the self-assembly of AuNPs onto large unilamellar vesicle structures...

Full description

Saved in:
Bibliographic Details
Published inBeilstein journal of nanotechnology Vol. 7; no. 1; pp. 655 - 663
Main Authors Barroso, M Fátima, Luna, M Alejandra, Tabares, Juan S Flores, Delerue-Matos, Cristina, Correa, N Mariano, Moyano, Fernando, Molina, Patricia G
Format Journal Article
LanguageEnglish
Published Germany Beilstein-Institut zur Föerderung der Chemischen Wissenschaften 2016
Beilstein-Institut
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this contribution a strategy is shown to covalently immobilize gold nanoparticles (AuNPs) onto vesicle bilayers with the aim of using this nanomaterial as platform for the future design of immunosensors. A novel methodology for the self-assembly of AuNPs onto large unilamellar vesicle structures is described. The vesicles were formed with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-undecanethiol (SH). After, the AuNPs photochemically synthesized in pure glycerol were mixed and anchored onto SH-DOPC vesicles. The data provided by voltammetry, spectrometry and microscopy techniques indicated that the AuNPs were successfully covalently anchored onto the vesicle bilayer and decorated vesicles exhibit a spherical shape with a size of 190 ± 10 nm. The developed procedure is easy, rapid and reproducible to start designing a possible immunosensor by using environmentally friendly procedures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2190-4286
2190-4286
DOI:10.3762/bjnano.7.58