In Situ Programming of CAR-T Cells: A Pressing Need in Modern Immunotherapy

Chimeric antigen receptor-T (CAR-T) cell-based therapy has become a successful option for treatment of numerous hematological malignancies, but also raises hope in a range of non-malignant diseases. However, in a traditional approach, generation of CAR-T cells is associated with the separation of pa...

Full description

Saved in:
Bibliographic Details
Published inArchivum Immunologiae et Therapiae Experimentalis Vol. 71; no. 1; p. 18
Main Authors Śledź, Marta, Wojciechowska, Alicja, Zagożdżon, Radosław, Kaleta, Beata
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chimeric antigen receptor-T (CAR-T) cell-based therapy has become a successful option for treatment of numerous hematological malignancies, but also raises hope in a range of non-malignant diseases. However, in a traditional approach, generation of CAR-T cells is associated with the separation of patient’s lymphocytes, their in vitro modification, and expansion and infusion back into patient’s bloodstream. This classical protocol is complex, time-consuming, and expensive. Those problems could be solved by successful protocols to produce CAR-T cells, but also CAR-natural killer cells or CAR macrophages, in situ, using viral platforms or non-viral delivery systems. Moreover, it was demonstrated that in situ CAR-T induction may be associated with reduced risk of the most common toxicities associated with CAR-T therapy, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and “on-target, off-tumor” toxicity. This review aims to summarize the current state-of-the-art and future perspectives for the in situ-produced CAR-T cells. Indeed, preclinical work in this area, including animal studies, raises hope for prospective translational development and validation in practical medicine of strategies for in situ generation of CAR-bearing immune effector cells.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0004-069X
1661-4917
DOI:10.1007/s00005-023-00683-y