Reducing indoor air pollutants with air filtration units in wood stove homes

Biomass burning has been shown to be a major source of poor indoor air quality (IAQ) in developing and higher income countries across the world. Specifically, wood burning for cooking and heating contributes to high indoor concentrations of fine (particles with aerodynamic diameters<2.5μm; PM2.5)...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 592; pp. 488 - 494
Main Authors McNamara, Marcy L., Thornburg, Jonathon, Semmens, Erin O., Ward, Tony J., Noonan, Curtis W.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Biomass burning has been shown to be a major source of poor indoor air quality (IAQ) in developing and higher income countries across the world. Specifically, wood burning for cooking and heating contributes to high indoor concentrations of fine (particles with aerodynamic diameters<2.5μm; PM2.5) and coarse (particles with aerodynamic diameters <10μm and >2.5μm; PMc) particulate matter. Endotoxin, predominantly found within the coarse fraction of airborne particulate matter, is associated with proinflammatory effects and adverse outcomes among susceptible populations. The aim of this study was to assess the efficacy of air filter interventions in reducing indoor PM2.5, PMc, and PMc-associated endotoxin concentrations in homes using a wood stove for primary heating. Homes (n=48) were randomized to receive in-room air filtration units with either a high efficiency filter (i.e. active) or a lower efficiency fiberglass filter (i.e., placebo). The active filter intervention showed a 66% reduction in indoor PM2.5 concentrations (95% CI: 42.2% to 79.7% reduction) relative to the placebo intervention. Both the active and the placebo filters were effective in substantially reducing indoor concentrations of PMc (63.3% and 40.6% average reduction for active and placebo filters, respectively) and PMc-associated endotoxin concentrations (91.8% and 80.4% average reductions, respectively). These findings support the use of high efficiency air filtration units for reducing indoor PM2.5 in homes using a wood stove for primary heating. We also discovered that using lower efficiency, lower cost filter alternatives can be effective for reducing PMc and airborne endotoxin in homes burning biomass fuel. [Display omitted] •High and low efficiency filters are evaluated.•Fine particles are significantly reduced using high efficiency air filters.•Larger particles and airborne endotoxin are reduced with high and low efficiency filters.•Constant filter unit use not required for pollutant reduction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2017.03.111