Arsenic co-carcinogenesis: Inhibition of DNA repair and interaction with zinc finger proteins
Arsenic is widely present in the environment and is associated with various population health risks including cancers. Arsenic exposure at environmentally relevant levels enhances the mutagenic effect of other carcinogens such as ultraviolet radiation. Investigation on the molecular mechanisms could...
Saved in:
Published in | Seminars in cancer biology Vol. 76; pp. 86 - 98 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Arsenic is widely present in the environment and is associated with various population health risks including cancers. Arsenic exposure at environmentally relevant levels enhances the mutagenic effect of other carcinogens such as ultraviolet radiation. Investigation on the molecular mechanisms could inform the prevention and intervention strategies of arsenic carcinogenesis and co-carcinogenesis. Arsenic inhibition of DNA repair has been demonstrated to be an important mechanism, and certain DNA repair proteins have been identified to be extremely sensitive to arsenic exposure. This review will summarize the recent advances in understanding the mechanisms of arsenic carcinogenesis and co-carcinogenesis, including DNA damage induction and ROS generation, particularly how arsenic inhibits DNA repair through an integrated molecular mechanism which includes its interactions with sensitive zinc finger DNA repair proteins. |
---|---|
ISSN: | 1044-579X 1096-3650 |
DOI: | 10.1016/j.semcancer.2021.05.009 |