Cardiovascular dynamics during head-up tilt assessed via pulsatile and non-pulsatile models

This study develops non-pulsatile and pulsatile models for the prediction of blood flow and pressure during head-up tilt. This test is used to diagnose potential pathologies within the autonomic control system, which acts to keep the cardiovascular system at homeostasis. We show that mathematical mo...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical biology Vol. 79; no. 3; pp. 987 - 1014
Main Authors Williams, Nakeya D., Brady, Renee, Gilmore, Steven, Gremaud, Pierre, Tran, Hien T., Ottesen, Johnny T., Mehlsen, Jesper, Olufsen, Mette S.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0303-6812
1432-1416
1432-1416
DOI10.1007/s00285-019-01386-9

Cover

Loading…
More Information
Summary:This study develops non-pulsatile and pulsatile models for the prediction of blood flow and pressure during head-up tilt. This test is used to diagnose potential pathologies within the autonomic control system, which acts to keep the cardiovascular system at homeostasis. We show that mathematical modeling can be used to predict changes in cardiac contractility, vascular resistance, and arterial compliance, quantities that cannot be measured but are useful to assess the system’s state. These quantities are predicted as time-varying parameters modeled using piecewise linear splines. Having models with various levels of complexity formulated with a common set of parameters, allows us to combine long-term non-pulsatile simulations with pulsatile simulations on a shorter time-scale. We illustrate results for a representative subject tilted head-up from a supine position to a 60 ∘ angle. The tilt is maintained for 5 min before the subject is tilted back down. Results show that if volume data is available for all vascular compartments three parameters can be identified, cardiovascular resistance, vascular compliance, and ventricular contractility, whereas if model predictions are made against arterial pressure and cardiac output data alone, only two parameters can be estimated either resistance and contractility or resistance and compliance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0303-6812
1432-1416
1432-1416
DOI:10.1007/s00285-019-01386-9