Salinity effect on simultaneous nitrification and denitrification, microbial characteristics in a hybrid sequencing batch biofilm reactor
The effect of increasing salinity on nitrogen removal via simultaneous nitrification and denitrification, microbial activities and extracellular polymeric substances (EPS) were investigated in a hybrid sequencing batch biofilm reactor filled with soft combination carriers. In the influent salinity r...
Saved in:
Published in | Bioprocess and biosystems engineering Vol. 41; no. 1; pp. 65 - 75 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The effect of increasing salinity on nitrogen removal via simultaneous nitrification and denitrification, microbial activities and extracellular polymeric substances (EPS) were investigated in a hybrid sequencing batch biofilm reactor filled with soft combination carriers. In the influent salinity range from 1.0 to 2.0%, average COD, NH
4
+
-N and TN removal efficiencies were higher than 97.1, 97.8 and 86.4% at the steady state. When salinity was increased to 2.5 and 3.0%, ammonium oxidation was obviously inhibited in the reactor. For both suspended sludge (S-sludge) and biofilm, specific ammonium oxidation rate, specific nitrite oxidation rate, specific oxygen uptake rate and dehydrogenase activity reduced with the increase of salinity. The quantity of total EPS increased with the increase of salinity from 1.0 to 2.0%. Generally, humic substances were the dominant composition of EPS in both S-sludge and biofilm, with the percentages of 43.9–54.0 and 43.8–64.6% in total EPS. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1615-7591 1615-7605 |
DOI: | 10.1007/s00449-017-1844-5 |