Dynamic self-correcting nucleophilic aromatic substitution
Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields. However, the limited number of reactions amenable to dynamic covalent chemistry necessarily confines the scope and functionality of materials...
Saved in:
Published in | Nature chemistry Vol. 10; no. 10; pp. 1023 - 1030 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2018
Springer Nature Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields. However, the limited number of reactions amenable to dynamic covalent chemistry necessarily confines the scope and functionality of materials synthesized. Here, we explore the dynamic and self-correcting nature of nucleophilic aromatic substitution (S
N
Ar), using
ortho
-aryldithiols and
ortho
-aryldifluorides that condense to produce redox-active thianthrene units. We demonstrate the facile construction of two-, three- and four-point junctions by reaction between a dithiol nucleophile and three different model electrophiles that produces molecules with two, three and four thianthrene moieties, respectively, in excellent yields. The regioselectivity observed is driven by thermodynamics; other connections form under kinetic control. We also show that the same chemistry can be extended to the synthesis of novel ladder macrocycles and porous polymer networks with Brunauer–Emmett–Teller surface area of up to 813 m
2
g
−1
.
Dynamic covalent chemistry offers promise for the formation of elaborate extended network materials in high yields, but the limited number of reactions available confines the scope and functionality of the materials synthesized. Now, nucleophilic aromatic substitution has been shown to be reversible, and thus self-correcting, enabling the easy synthesis of sulfur-rich materials. |
---|---|
AbstractList | Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields. However, the limited number of reactions amenable to dynamic covalent chemistry necessarily confines the scope and functionality of materials synthesized. Here, we explore the dynamic and self-correcting nature of nucleophilic aromatic substitution (S
Ar), using ortho-aryldithiols and ortho-aryldifluorides that condense to produce redox-active thianthrene units. We demonstrate the facile construction of two-, three- and four-point junctions by reaction between a dithiol nucleophile and three different model electrophiles that produces molecules with two, three and four thianthrene moieties, respectively, in excellent yields. The regioselectivity observed is driven by thermodynamics; other connections form under kinetic control. We also show that the same chemistry can be extended to the synthesis of novel ladder macrocycles and porous polymer networks with Brunauer-Emmett-Teller surface area of up to 813 m
g
. Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields. However, the limited number of reactions amenable to dynamic covalent chemistry necessarily confines the scope and functionality of materials synthesized. Here, we explore the dynamic and self-correcting nature of nucleophilic aromatic substitution (SNAr), using ortho-aryldithiols and ortho-aryldifluorides that condense to produce redox-active thianthrene units. We demonstrate the facile construction of two-, three- and four-point junctions by reaction between a dithiol nucleophile and three different model electrophiles that produces molecules with two, three and four thianthrene moieties, respectively, in excellent yields. The regioselectivity observed is driven by thermodynamics; other connections form under kinetic control. We also show that the same chemistry can be extended to the synthesis of novel ladder macrocycles and porous polymer networks with Brunauer–Emmett–Teller surface area of up to 813 m2 g−1. Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields. However, the limited number of reactions amenable to dynamic covalent chemistry necessarily confines the scope and functionality of materials synthesized. Here, we explore the dynamic and self-correcting nature of nucleophilic aromatic substitution (SNAr), using ortho-aryldithiols and ortho-aryldifluorides that condense to produce redox-active thianthrene units. We demonstrate the facile construction of two-, three- and four-point junctions by reaction between a dithiol nucleophile and three different model electrophiles that produces molecules with two, three and four thianthrene moieties, respectively, in excellent yields. The regioselectivity observed is driven by thermodynamics; other connections form under kinetic control. We also show that the same chemistry can be extended to the synthesis of novel ladder macrocycles and porous polymer networks with Brunauer-Emmett-Teller surface area of up to 813 m2 g-1.Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields. However, the limited number of reactions amenable to dynamic covalent chemistry necessarily confines the scope and functionality of materials synthesized. Here, we explore the dynamic and self-correcting nature of nucleophilic aromatic substitution (SNAr), using ortho-aryldithiols and ortho-aryldifluorides that condense to produce redox-active thianthrene units. We demonstrate the facile construction of two-, three- and four-point junctions by reaction between a dithiol nucleophile and three different model electrophiles that produces molecules with two, three and four thianthrene moieties, respectively, in excellent yields. The regioselectivity observed is driven by thermodynamics; other connections form under kinetic control. We also show that the same chemistry can be extended to the synthesis of novel ladder macrocycles and porous polymer networks with Brunauer-Emmett-Teller surface area of up to 813 m2 g-1. Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields. However, the limited number of reactions amenable to dynamic covalent chemistry necessarily confines the scope and functionality of materials synthesized. Here, we explore the dynamic and self-correcting nature of nucleophilic aromatic substitution (S N Ar), using ortho -aryldithiols and ortho -aryldifluorides that condense to produce redox-active thianthrene units. We demonstrate the facile construction of two-, three- and four-point junctions by reaction between a dithiol nucleophile and three different model electrophiles that produces molecules with two, three and four thianthrene moieties, respectively, in excellent yields. The regioselectivity observed is driven by thermodynamics; other connections form under kinetic control. We also show that the same chemistry can be extended to the synthesis of novel ladder macrocycles and porous polymer networks with Brunauer–Emmett–Teller surface area of up to 813 m 2 g −1 . Dynamic covalent chemistry offers promise for the formation of elaborate extended network materials in high yields, but the limited number of reactions available confines the scope and functionality of the materials synthesized. Now, nucleophilic aromatic substitution has been shown to be reversible, and thus self-correcting, enabling the easy synthesis of sulfur-rich materials. Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields. However, the limited number of reactions amenable to dynamic covalent chemistry necessarily confines the scope and functionality of materials synthesized. Here, we explore the dynamic and self-correcting nature of nucleophilic aromatic substitution (SNAr), using ortho-aryldithiols and ortho-aryldifluorides that condense to produce redox-active thianthrene units. We demonstrate the facile construction of two-, three- and four-point junctions by reaction between a dithiol nucleophile and three different model electrophiles that produces molecules with two, three and four thianthrene moieties, respectively, in excellent yields. The regioselectivity observed is driven by thermodynamics; other connections form under kinetic control. We also show that the same chemistry can be extended to the synthesis of novel ladder macrocycles and porous polymer networks with Brunauer-Emmett-Teller surface area of up to 813 m(2) g-(1). |
Author | Swager, Timothy M. Ong, Wen Jie |
Author_xml | – sequence: 1 givenname: Wen Jie surname: Ong fullname: Ong, Wen Jie organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 2 givenname: Timothy M. orcidid: 0000-0002-3577-0510 surname: Swager fullname: Swager, Timothy M. email: tswager@mit.edu organization: Department of Chemistry, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30177780$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1rFTEUhoNU7If-gG6k4KZQRk--Jhl3ctuqUHCj65BJMm3KTHKbZJD--2aY6xUKFhchgTzPOYfzHqODEIND6BTDRwxUfsoMcy4awLIeQhr5Ch1hwXnDKOsO9m8Kh-g453uAllPcvkGHFLAQQsIR-nz5GPTkzVl249CYmJIzxYfbszCb0cXtnR_rp05x0mWh5j4XX-biY3iLXg96zO7d7j5Bv66vfm6-NTc_vn7ffLlpDBO8NKYdrBXMSc5MD4KRnhEMXFqse4atZEKT1vSGWCE71gvJSMckpyCBWGslPUHna91tig-zy0VNPhs3jjq4OGdFoOsYbakgFf3wDL2Pcwp1OkUwBkIJA1yp9ztq7idn1Tb5SadH9WcrFbhYgd-uj0M23gXj9hgAMMYx6Wh9wTKf_H9644telreJcyhVxatqUsw5uWGvYVBLxGqNWNWI1RKxWtqJZ47Z1SxJ-_FFk6xmrl3CrUt_t_Nv6QmKc7Xf |
CitedBy_id | crossref_primary_10_1021_acsorginorgau_4c00031 crossref_primary_10_1002_chem_201903272 crossref_primary_10_1016_j_cclet_2024_109575 crossref_primary_10_1002_ange_202106230 crossref_primary_10_1039_D3TA02146G crossref_primary_10_1002_ange_201902900 crossref_primary_10_1002_ange_202007427 crossref_primary_10_1039_D0DT02205E crossref_primary_10_1002_adma_202306784 crossref_primary_10_1016_j_trechm_2020_09_005 crossref_primary_10_1039_D2QO02058K crossref_primary_10_1021_acs_joc_1c02269 crossref_primary_10_1055_s_0042_1751368 crossref_primary_10_1021_jacs_2c04516 crossref_primary_10_1002_ange_202304378 crossref_primary_10_1002_advs_202104898 crossref_primary_10_1021_acs_orglett_0c00481 crossref_primary_10_1016_j_eurpolymj_2024_113128 crossref_primary_10_1007_s11426_019_9477_y crossref_primary_10_1002_adma_202407854 crossref_primary_10_1039_D0NJ05042C crossref_primary_10_1016_j_jfluchem_2023_110165 crossref_primary_10_1002_ange_202319389 crossref_primary_10_1002_chem_202000981 crossref_primary_10_1016_j_ejmech_2024_116580 crossref_primary_10_1002_anie_202319389 crossref_primary_10_1002_cssc_202300303 crossref_primary_10_1021_jacs_1c02113 crossref_primary_10_1038_s41557_018_0138_0 crossref_primary_10_1002_ange_202209343 crossref_primary_10_1021_acsmaterialslett_9b00434 crossref_primary_10_1002_anie_202213429 crossref_primary_10_1002_anie_202304378 crossref_primary_10_1021_acs_joc_9b02523 crossref_primary_10_1039_C9CC04990H crossref_primary_10_1021_jacs_2c02346 crossref_primary_10_1002_adom_202102814 crossref_primary_10_1021_jacs_3c03455 crossref_primary_10_3390_molecules29112621 crossref_primary_10_1002_anie_202007427 crossref_primary_10_1021_acs_chemrev_3c00926 crossref_primary_10_1039_D4TA01779J crossref_primary_10_1021_acs_chemrev_0c01184 crossref_primary_10_1021_acs_orglett_1c04267 crossref_primary_10_1002_ajoc_202000169 crossref_primary_10_1016_j_chempr_2020_01_011 crossref_primary_10_1002_anie_202209343 crossref_primary_10_1016_j_jcis_2023_09_002 crossref_primary_10_1021_acs_joc_2c01446 crossref_primary_10_1021_acs_macromol_0c02395 crossref_primary_10_1021_jacs_2c00778 crossref_primary_10_1088_0256_307X_37_6_066803 crossref_primary_10_1021_jacsau_1c00573 crossref_primary_10_1039_D2CC04765A crossref_primary_10_1002_ange_202213429 crossref_primary_10_1021_acs_macromol_1c00546 crossref_primary_10_1016_j_matt_2020_09_007 crossref_primary_10_1002_anie_202303035 crossref_primary_10_1002_chem_202400231 crossref_primary_10_1002_smll_202501398 crossref_primary_10_1021_acs_orglett_2c03518 crossref_primary_10_1039_D1SC00738F crossref_primary_10_1021_acs_macromol_9b02635 crossref_primary_10_1021_jacs_1c09884 crossref_primary_10_1038_s42004_023_01063_5 crossref_primary_10_1002_ejoc_202400576 crossref_primary_10_1021_acs_joc_4c01687 crossref_primary_10_1002_anie_202104054 crossref_primary_10_1002_pol_20220115 crossref_primary_10_1002_anie_202106230 crossref_primary_10_1038_s41557_022_01046_4 crossref_primary_10_1021_acs_jpcc_0c00087 crossref_primary_10_1002_ejoc_202400211 crossref_primary_10_1039_D0SC06576E crossref_primary_10_1002_advs_202304497 crossref_primary_10_1002_ange_202104054 crossref_primary_10_1016_j_chempr_2020_08_002 crossref_primary_10_1021_acsmaterialslett_3c01276 crossref_primary_10_1002_chem_202100149 crossref_primary_10_1002_anie_201902900 crossref_primary_10_1002_ange_202303035 crossref_primary_10_1038_s41467_023_43013_8 crossref_primary_10_1039_D1QM00015B crossref_primary_10_3390_polym15204191 crossref_primary_10_1021_acs_organomet_9b00162 crossref_primary_10_1021_acssuschemeng_2c01717 crossref_primary_10_3389_fchem_2021_620017 |
Cites_doi | 10.1039/C3CS60342C 10.1021/ar500037v 10.1021/ol051180q 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E 10.1021/jacs.5b03551 10.1039/C6SC01133K 10.1039/c0jm03483e 10.1021/ja400119t 10.1039/c2cs15305j 10.1002/anie.201000443 10.1002/adma.201606100 10.1002/anie.201407670 10.1002/hlca.19970800802 10.1039/C7CS00569E 10.1021/ja303356z 10.1021/jacs.7b02381 10.1021/ja207005z 10.1021/acs.orglett.6b01112 10.1039/C3CS60326A 10.1002/9781119075738.ch3 10.1021/acsami.6b15939 10.1021/cr60153a002 10.1016/j.polymer.2012.05.001 10.1039/C5SC04977F 10.1021/cr60266a001 10.1021/ol5010627 10.1038/nature16185 10.1039/C4SC02502D 10.1039/c3cs60044k 10.1021/ja0360945 10.1039/b600349d 10.1002/anie.201703008 10.1002/1521-3927(20011201)22:18<1463::AID-MARC1463>3.0.CO;2-F 10.1039/a703854b 10.1039/c4sc02502d 10.1039/c6sc01133k 10.1039/c3cs60342c 10.1039/c5sc04977f 10.1039/c3cs60326a 10.1039/c7cs00569e |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Oct 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Oct 2018 |
DBID | AAYXX CITATION 17B 1KM BLEPL DTL EGQ HBEAY NPM 3V. 7QR 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1038/s41557-018-0122-8 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2018 PubMed ProQuest Central (Corporate) Chemoreception Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1755-4349 |
EndPage | 1030 |
ExternalDocumentID | 30177780 000445129300008 10_1038_s41557_018_0122_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Agency for Science, Technology and Research (A*STAR), Singapore; Agency for Science Technology & Research (A*STAR) – fundername: Abdul Latif Jameel World Water and Food Security Lab (J-WAFS) Seed Grant |
GroupedDBID | --- 0R~ 123 29M 39C 4.4 53G 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABFSG ABJCF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACSTC ACUHS ADBBV ADNMO AENEX AEUYN AEZWR AFANA AFBBN AFHIU AFKRA AFSHS AFWHJ AGAYW AGGDT AGQPQ AHMBA AHOSX AHSBF AHWEU AIBTJ AIXLP AIYXT ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ KB. L-9 LK8 M1P M7P ML- NFIDA NNMJJ O9- ODYON P2P PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP AAYXX ALIPV CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE 3V. 5BI AAEEF AAZLF AGHTU NPM 7QR 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c475t-c6fdd74e854cb0742b421058d1ab41d847a26cbc2d7894b7842948530802ddd83 |
IEDL.DBID | 7X7 |
ISICitedReferencesCount | 87 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000445129300008 |
ISSN | 1755-4330 1755-4349 |
IngestDate | Thu Jul 10 18:18:22 EDT 2025 Fri Jul 25 09:09:37 EDT 2025 Wed Feb 19 02:32:10 EST 2025 Wed Aug 06 16:06:53 EDT 2025 Fri Aug 29 15:42:19 EDT 2025 Thu Apr 24 22:50:53 EDT 2025 Tue Jul 01 03:02:10 EDT 2025 Sun Aug 31 08:58:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | POLYMER NETWORKS ROUTE COVALENT CHEMISTRY BONDS SYSTEMS CAGES SINGLE-STEP SYNTHESIS METATHESIS |
Language | English |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c475t-c6fdd74e854cb0742b421058d1ab41d847a26cbc2d7894b7842948530802ddd83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3577-0510 |
PMID | 30177780 |
PQID | 2110232401 |
PQPubID | 536302 |
PageCount | 8 |
ParticipantIDs | webofscience_primary_000445129300008 crossref_primary_10_1038_s41557_018_0122_8 proquest_journals_2110232401 crossref_citationtrail_10_1038_s41557_018_0122_8 springer_journals_10_1038_s41557_018_0122_8 proquest_miscellaneous_2099436372 webofscience_primary_000445129300008CitationCount pubmed_primary_30177780 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: LONDON – name: England |
PublicationTitle | Nature chemistry |
PublicationTitleAbbrev | Nature Chem NAT CHEM |
PublicationTitleAlternate | Nat Chem |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Springer Nature Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature – name: Nature Publishing Group |
References | Yu, Jin, Zhang (CR2) 2017 Jin, Wang, Taynton, Zhang (CR3) 2014; 47 Belowich, Stoddart (CR6) 2012; 41 Hargreaves, Pritchard, Dave (CR27) 1970; 70 Mastalerz (CR4) 2010; 49 Wu, Guo, Wang (CR21) 2017; 56 Chakraborty, Colon, Snurr, Nguyen (CR33) 2015; 6 Black, Sanders, Stefankiewicz (CR9) 2014; 43 Joule (CR23) 1990 Jin, Yu, Denman, Zhang (CR12) 2013; 42 Wackerly, Zhang, Nodder, Carlin, Katz (CR15) 2014; 16 Makhseed, Ibrahim, Samuel (CR26) 2012; 53 Rowan, Cantrill, Cousins, Sanders, Stoddart (CR1) 2002; 41 Wang (CR11) 2016; 7 Pandey (CR32) 2011; 21 Zou, Dong, Luo, Zhao, Xie (CR5) 2017; 29 Lu, Tournilhac, Leibler, Guan (CR10) 2012; 134 Fu, Guo, Zhao, Wang, Wang (CR14) 2016; 18 Katz, Selby, Conry (CR18) 2005; 7 McKeown, Budd (CR28) 2006; 35 Bapat, Roy, Ray, Savin, Sumerlin (CR8) 2011; 133 Xiao (CR20) 2017; 139 Cromwell, Chung, Guan (CR7) 2015; 137 Ding, Zhang, Zhang, Zhou, Yu (CR24) 2018; 47 Wu (CR30) 2017; 9 Guo, Fu, Zhao, Wang (CR13) 2014; 53 Alsbaiee (CR19) 2016; 529 CR22 Sing (CR31) 1985; 57 Long, Swager (CR17) 2003; 125 Bunnett, Zahler (CR25) 1951; 49 Jayakannan, Ramakrishnan (CR16) 2001; 22 Lascano (CR35) 2016; 7 Wilson, Gasparini, Matile (CR34) 2014; 43 Spokoyny (CR36) 2013; 135 Mayor, Lehn (CR29) 1997; 80 122_CR22 JF Bunnett (122_CR25) 1951; 49 SJ Rowan (122_CR1) 2002; 41 SP Black (122_CR9) 2014; 43 M Jayakannan (122_CR16) 2001; 22 W Zou (122_CR5) 2017; 29 NB McKeown (122_CR28) 2006; 35 L Xiao (122_CR20) 2017; 139 MK Hargreaves (122_CR27) 1970; 70 A Alsbaiee (122_CR19) 2016; 529 KSW Sing (122_CR31) 1985; 57 S Chakraborty (122_CR33) 2015; 6 TM Long (122_CR17) 2003; 125 Y Jin (122_CR3) 2014; 47 S Makhseed (122_CR26) 2012; 53 John A. Joule (122_CR23) 1990 QH Guo (122_CR13) 2014; 53 ZD Fu (122_CR14) 2016; 18 AM Spokoyny (122_CR36) 2013; 135 OR Cromwell (122_CR7) 2015; 137 Q Wang (122_CR11) 2016; 7 JW Wackerly (122_CR15) 2014; 16 S Lascano (122_CR35) 2016; 7 H Wu (122_CR30) 2017; 9 JL Katz (122_CR18) 2005; 7 M Mayor (122_CR29) 1997; 80 A Wilson (122_CR34) 2014; 43 M Mastalerz (122_CR4) 2010; 49 Y Ding (122_CR24) 2018; 47 Y Jin (122_CR12) 2013; 42 Chao Yu (122_CR2) 2017 ZC Wu (122_CR21) 2017; 56 AP Bapat (122_CR8) 2011; 133 YX Lu (122_CR10) 2012; 134 ME Belowich (122_CR6) 2012; 41 P Pandey (122_CR32) 2011; 21 Mayor, M (WOS:000071175600001) 1997; 80 Xiao, LL (WOS:000403631200005) 2017; 139 Belowich, ME (WOS:000300797700001) 2012; 41 BenHaida, A (WOS:A1997XQ87700027) 1997 HARGREAVES, MK (WOS:A1970G866000001) 1970; 70 Wu, ZC (WOS:000402857800025) 2017; 56 Katz, JL (WOS:000230858500029) 2005; 7 SING, KSW (WOS:A1985AFF6300012) 1985; 57 Cromwell, OR (WOS:000355383500018) 2015; 137 Lascano, S (WOS:000378715000093) 2016; 7 Black, SP (WOS:000332037200007) 2014; 43 Wilson, A (WOS:000332037200012) 2014; 43 Bapat, AP (WOS:000298719800050) 2011; 133 Makhseed, S (WOS:000305590000020) 2012; 53 Ding, Y (WOS:000419218700004) 2018; 47 Wackerly, JW (WOS:000337074300035) 2014; 16 Long, TM (WOS:000186580600051) 2003; 125 Jin, YH (WOS:000322079600005) 2013; 42 Spokoyny, AM (WOS:000318204800004) 2013; 135 BUNNETT, JF (WOS:A1951UE94700002) 1951; 49 Pandey, P (WOS:000286614100011) 2011; 21 Fu, ZD (WOS:000377319000038) 2016; 18 Zou, WK (WOS:000398357200010) 2017; 29 Mastalerz, M (WOS:000280432100004) 2010; 49 Alsbaiee, A (WOS:000368015700032) 2016; 529 Jin, YH (WOS:000336415700013) 2014; 47 McKeown, NB (WOS:000239211500001) 2006; 35 Guo, QH (WOS:000345590300044) 2014; 53 Wang, Q (WOS:000374859300050) 2016; 7 Lu, YX (WOS:000304285700035) 2012; 134 Joule, J. A (000445129300008.16) 1990; 48 Rowan, SJ (WOS:000174450300001) 2002; 41 Yu, C (000445129300008.35) 2017 Wu, HW (WOS:000393355900071) 2017; 9 Jayakannan, M (WOS:000173531200001) 2001; 22 Chakraborty, S (WOS:000345901600043) 2015; 6 |
References_xml | – ident: CR22 – volume: 43 start-page: 1948 year: 2014 end-page: 1962 ident: CR34 article-title: Functional systems with orthogonal dynamic covalent bonds publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60342C – volume: 47 start-page: 1575 year: 2014 end-page: 1586 ident: CR3 article-title: Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers publication-title: Acc. Chem. Res. doi: 10.1021/ar500037v – volume: 7 start-page: 3505 year: 2005 end-page: 3507 ident: CR18 article-title: Single-step synthesis of D -symmetric bicyclooxacalixarenes publication-title: Org. Lett. doi: 10.1021/ol051180q – volume: 41 start-page: 898 year: 2002 end-page: 952 ident: CR1 article-title: Dynamic covalent chemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E – volume: 137 start-page: 6492 year: 2015 end-page: 6495 ident: CR7 article-title: Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03551 – volume: 7 start-page: 4720 year: 2016 end-page: 4724 ident: CR35 article-title: The third orthogonal dynamic covalent bond publication-title: Chem. Sci. doi: 10.1039/C6SC01133K – volume: 21 start-page: 1700 year: 2011 end-page: 1703 ident: CR32 article-title: A ‘click-based’ porous organic polymer from tetrahedral building blocks publication-title: J. Mater. Chem. doi: 10.1039/c0jm03483e – volume: 135 start-page: 5946 year: 2013 end-page: 5949 ident: CR36 article-title: A perfluoroaryl-cysteine S Ar chemistry approach to unprotected peptide stapling. publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400119t – volume: 41 start-page: 2003 year: 2012 end-page: 2024 ident: CR6 article-title: Dynamic imine chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15305j – volume: 49 start-page: 5042 year: 2010 end-page: 5053 ident: CR4 article-title: Shape-persistent organic cage compounds by dynamic covalent bond formation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000443 – volume: 29 start-page: 1606100 year: 2017 ident: CR5 article-title: Dynamic covalent polymer networks: from old chemistry to modern day innovations publication-title: Adv. Mater. doi: 10.1002/adma.201606100 – volume: 53 start-page: 13548 year: 2014 end-page: 13552 ident: CR13 article-title: Synthesis, structure, and properties of O -corona[3]arene[3]tetrazines publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407670 – volume: 80 start-page: 2277 year: 1997 end-page: 2285 ident: CR29 article-title: Potassium cryptate of a macrobicyclic ligand featuring a reducible hexakis(phenylthio)benzene electron-acceptor site publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19970800802 – volume: 57 start-page: 603 year: 1985 end-page: 619 ident: CR31 article-title: Reporting data for gas/solid systems with special reference to the determination of surface area and porosity publication-title: IUPAC – volume: 47 start-page: 69 year: 2018 end-page: 103 ident: CR24 article-title: Molecular engineering of organic electroactive materials for redox flow batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00569E – volume: 134 start-page: 8424 year: 2012 end-page: 8427 ident: CR10 article-title: Making insoluble polymer networks malleable via olefin metathesis publication-title: J. Am. Chem. Soc doi: 10.1021/ja303356z – start-page: 301 year: 1990 end-page: 393 ident: CR23 article-title: Thianthrenes publication-title: Advances in Heterocyclic Chemistry Volume 48 – volume: 139 start-page: 7689 year: 2017 end-page: 7692 ident: CR20 article-title: β-Cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02381 – volume: 133 start-page: 19832 year: 2011 end-page: 19838 ident: CR8 article-title: Dynamic-covalent macromolecular stars with boronic ester linkages publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207005z – volume: 18 start-page: 2668 year: 2016 end-page: 2671 ident: CR14 article-title: Synthesis and structure of corona[6](het)arenes containing mixed bridge units publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b01112 – volume: 43 start-page: 1861 year: 2014 end-page: 1872 ident: CR9 article-title: Disulfide exchange: exposing supramolecular reactivity through dynamic covalent chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60326A – start-page: 121 year: 2017 end-page: 163 ident: CR2 article-title: Shape-persistent Macrocycles through Dynamic Covalent Reactions publication-title: Dynamic Covalent Chemistry doi: 10.1002/9781119075738.ch3 – volume: 9 start-page: 3865 year: 2017 end-page: 3872 ident: CR30 article-title: Tuning for visible fluorescence and near-infrared phosphorescence on a unimolecular mechanically sensitive platform via adjustable CH−π interaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15939 – volume: 49 start-page: 273 year: 1951 end-page: 412 ident: CR25 article-title: Aromatic nucleophilic substitution reactions publication-title: Chem. Rev. doi: 10.1021/cr60153a002 – volume: 53 start-page: 2964 year: 2012 end-page: 2972 ident: CR26 article-title: Phthalimide based polymers of intrinsic microporosity publication-title: Polymer doi: 10.1016/j.polymer.2012.05.001 – volume: 7 start-page: 3370 year: 2016 end-page: 3376 ident: CR11 article-title: Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: dimer, tetramer, or interlocked complex? publication-title: Chem. Sci. doi: 10.1039/C5SC04977F – volume: 70 start-page: 439 year: 1970 end-page: 469 ident: CR27 article-title: Cyclic carboxylic monoimides publication-title: Chem. Rev. doi: 10.1021/cr60266a001 – volume: 16 start-page: 2920 year: 2014 end-page: 2922 ident: CR15 article-title: Single step synthesis of acetylene-substituted oxacalix[4]arenes publication-title: Org. Lett. doi: 10.1021/ol5010627 – volume: 529 start-page: 190 year: 2016 end-page: 194 ident: CR19 article-title: Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer publication-title: Nature doi: 10.1038/nature16185 – volume: 6 start-page: 384 year: 2015 end-page: 389 ident: CR33 article-title: Hierarchically porous organic polymers: highly enhanced gas uptake and transport through templated synthesis publication-title: Chem. Sci. doi: 10.1039/C4SC02502D – volume: 42 start-page: 6634 year: 2013 end-page: 6654 ident: CR12 article-title: Recent advances in dynamic covalent chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60044k – volume: 125 start-page: 14113 year: 2003 end-page: 14119 ident: CR17 article-title: Molecular design of free volume as a route to low-κ dielectric materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0360945 – volume: 35 start-page: 675 year: 2006 end-page: 683 ident: CR28 article-title: Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage publication-title: Chem. Soc. Rev. doi: 10.1039/b600349d – volume: 56 start-page: 7151 year: 2017 end-page: 7155 ident: CR21 article-title: Corona[5]arenes accessed by a macrocycle-to-macrocycle transformation route and a one-pot three-component reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703008 – volume: 22 start-page: 1463 year: 2001 end-page: 1473 ident: CR16 article-title: Recent developments in polyether synthesis publication-title: Macromol. Rapid Commun. doi: 10.1002/1521-3927(20011201)22:18<1463::AID-MARC1463>3.0.CO;2-F – volume: 137 start-page: 6492 year: 2015 ident: 122_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03551 – volume: 53 start-page: 13548 year: 2014 ident: 122_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407670 – volume: 529 start-page: 190 year: 2016 ident: 122_CR19 publication-title: Nature doi: 10.1038/nature16185 – volume: 43 start-page: 1861 year: 2014 ident: 122_CR9 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60326A – volume: 21 start-page: 1700 year: 2011 ident: 122_CR32 publication-title: J. Mater. Chem. doi: 10.1039/c0jm03483e – start-page: 301 volume-title: Advances in Heterocyclic Chemistry Volume 48 year: 1990 ident: 122_CR23 – start-page: 121 volume-title: Dynamic Covalent Chemistry year: 2017 ident: 122_CR2 doi: 10.1002/9781119075738.ch3 – volume: 49 start-page: 273 year: 1951 ident: 122_CR25 publication-title: Chem. Rev. doi: 10.1021/cr60153a002 – volume: 125 start-page: 14113 year: 2003 ident: 122_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0360945 – volume: 53 start-page: 2964 year: 2012 ident: 122_CR26 publication-title: Polymer doi: 10.1016/j.polymer.2012.05.001 – volume: 49 start-page: 5042 year: 2010 ident: 122_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000443 – ident: 122_CR22 doi: 10.1039/a703854b – volume: 70 start-page: 439 year: 1970 ident: 122_CR27 publication-title: Chem. Rev. doi: 10.1021/cr60266a001 – volume: 47 start-page: 1575 year: 2014 ident: 122_CR3 publication-title: Acc. Chem. Res. doi: 10.1021/ar500037v – volume: 18 start-page: 2668 year: 2016 ident: 122_CR14 publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b01112 – volume: 29 start-page: 1606100 year: 2017 ident: 122_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201606100 – volume: 16 start-page: 2920 year: 2014 ident: 122_CR15 publication-title: Org. Lett. doi: 10.1021/ol5010627 – volume: 134 start-page: 8424 year: 2012 ident: 122_CR10 publication-title: J. Am. Chem. Soc doi: 10.1021/ja303356z – volume: 9 start-page: 3865 year: 2017 ident: 122_CR30 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15939 – volume: 7 start-page: 3505 year: 2005 ident: 122_CR18 publication-title: Org. Lett. doi: 10.1021/ol051180q – volume: 43 start-page: 1948 year: 2014 ident: 122_CR34 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60342C – volume: 41 start-page: 898 year: 2002 ident: 122_CR1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E – volume: 80 start-page: 2277 year: 1997 ident: 122_CR29 publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19970800802 – volume: 47 start-page: 69 year: 2018 ident: 122_CR24 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00569E – volume: 7 start-page: 4720 year: 2016 ident: 122_CR35 publication-title: Chem. Sci. doi: 10.1039/C6SC01133K – volume: 35 start-page: 675 year: 2006 ident: 122_CR28 publication-title: Chem. Soc. Rev. doi: 10.1039/b600349d – volume: 22 start-page: 1463 year: 2001 ident: 122_CR16 publication-title: Macromol. Rapid Commun. doi: 10.1002/1521-3927(20011201)22:18<1463::AID-MARC1463>3.0.CO;2-F – volume: 56 start-page: 7151 year: 2017 ident: 122_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703008 – volume: 139 start-page: 7689 year: 2017 ident: 122_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02381 – volume: 41 start-page: 2003 year: 2012 ident: 122_CR6 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15305j – volume: 57 start-page: 603 year: 1985 ident: 122_CR31 publication-title: IUPAC – volume: 6 start-page: 384 year: 2015 ident: 122_CR33 publication-title: Chem. Sci. doi: 10.1039/C4SC02502D – volume: 42 start-page: 6634 year: 2013 ident: 122_CR12 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60044k – volume: 133 start-page: 19832 year: 2011 ident: 122_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207005z – volume: 7 start-page: 3370 year: 2016 ident: 122_CR11 publication-title: Chem. Sci. doi: 10.1039/C5SC04977F – volume: 135 start-page: 5946 year: 2013 ident: 122_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400119t – volume: 53 start-page: 13548 year: 2014 ident: WOS:000345590300044 article-title: Synthesis, Structure, and Properties of O-6-Corona[3] arene[3]tetrazines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201407670 – volume: 48 year: 1990 ident: 000445129300008.16 publication-title: Thianthrenes in Advances in Heterocyclic Chemistry – volume: 57 start-page: 603 year: 1985 ident: WOS:A1985AFF6300012 article-title: REPORTING PHYSISORPTION DATA FOR GAS SOLID SYSTEMS WITH SPECIAL REFERENCE TO THE DETERMINATION OF SURFACE-AREA AND POROSITY (RECOMMENDATIONS 1984) publication-title: PURE AND APPLIED CHEMISTRY – volume: 6 start-page: 384 year: 2015 ident: WOS:000345901600043 article-title: Hierarchically porous organic polymers: highly enhanced gas uptake and transport through templated synthesis publication-title: CHEMICAL SCIENCE doi: 10.1039/c4sc02502d – volume: 135 start-page: 5946 year: 2013 ident: WOS:000318204800004 article-title: A Perfluoroaryl-Cysteine SNAr Chemistry Approach to Unprotected Peptide Stapling publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja400119t – volume: 16 start-page: 2920 year: 2014 ident: WOS:000337074300035 article-title: Single Step Synthesis of Acetylene-Substituted Oxacalix[4]arenes publication-title: ORGANIC LETTERS doi: 10.1021/ol5010627 – volume: 7 start-page: 4720 year: 2016 ident: WOS:000378715000093 article-title: The third orthogonal dynamic covalent bond publication-title: CHEMICAL SCIENCE doi: 10.1039/c6sc01133k – volume: 22 start-page: 1463 year: 2001 ident: WOS:000173531200001 article-title: Recent developments in polyether synthesis publication-title: MACROMOLECULAR RAPID COMMUNICATIONS – volume: 9 start-page: 3865 year: 2017 ident: WOS:000393355900071 article-title: Tuning for Visible Fluorescence and Near-Infrared Phosphorescence on a Unimolecular Mechanically Sensitive Platform via Adjustable CH-pi Interaction publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.6b15939 – volume: 42 start-page: 6634 year: 2013 ident: WOS:000322079600005 article-title: Recent advances in dynamic covalent chemistry publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c3cs60044k – volume: 139 start-page: 7689 year: 2017 ident: WOS:000403631200005 article-title: beta-Cyclodextrin Polymer Network Sequesters Perfluorooctanoic Acid at Environmentally Relevant Concentrations publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b02381 – volume: 125 start-page: 14113 year: 2003 ident: WOS:000186580600051 article-title: Molecular design of free volume as a route to low-kappa dielectric materials publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0360945 – year: 2017 ident: 000445129300008.35 publication-title: Dynamic Covalent Chemistry: Principles, Reactions, and Applications – volume: 35 start-page: 675 year: 2006 ident: WOS:000239211500001 article-title: Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b600349d – volume: 43 start-page: 1948 year: 2014 ident: WOS:000332037200012 article-title: Functional systems with orthogonal dynamic covalent bonds publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c3cs60342c – volume: 134 start-page: 8424 year: 2012 ident: WOS:000304285700035 article-title: Making Insoluble Polymer Networks Malleable via Olefin Metathesis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja303356z – volume: 47 start-page: 1575 year: 2014 ident: WOS:000336415700013 article-title: Dynamic Covalent Chemistry Approaches Toward Macrocycles, Molecular Cages, and Polymers publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar500037v – volume: 529 start-page: 190 year: 2016 ident: WOS:000368015700032 article-title: Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer publication-title: NATURE doi: 10.1038/nature16185 – volume: 29 start-page: ARTN 1606100 year: 2017 ident: WOS:000398357200010 article-title: Dynamic Covalent Polymer Networks: from Old Chemistry to Modern Day Innovations publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201606100 – volume: 41 start-page: 2003 year: 2012 ident: WOS:000300797700001 article-title: Dynamic imine chemistry publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c2cs15305j – volume: 137 start-page: 6492 year: 2015 ident: WOS:000355383500018 article-title: Malleable and Self-Healing Covalent Polymer Networks through Tunable Dynamic Boronic Ester Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b03551 – volume: 80 start-page: 2277 year: 1997 ident: WOS:000071175600001 article-title: Potassium cryptate of a macrobicyclic ligand featuring a reducible hexakis(phenylthio)benzene electron-acceptor site publication-title: HELVETICA CHIMICA ACTA – volume: 49 start-page: 5042 year: 2010 ident: WOS:000280432100004 article-title: Shape-Persistent Organic Cage Compounds by Dynamic Covalent Bond Formation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201000443 – volume: 133 start-page: 19832 year: 2011 ident: WOS:000298719800050 article-title: Dynamic-Covalent Macromolecular Stars with Boronic Ester Linkages publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja207005z – volume: 7 start-page: 3505 year: 2005 ident: WOS:000230858500029 article-title: Single-step synthesis of D-3h-symmetric bicyclooxacalixarenes publication-title: ORGANIC LETTERS doi: 10.1021/ol051180q – volume: 53 start-page: 2964 year: 2012 ident: WOS:000305590000020 article-title: Phthalimide based polymers of intrinsic microporosity publication-title: POLYMER doi: 10.1016/j.polymer.2012.05.001 – volume: 18 start-page: 2668 year: 2016 ident: WOS:000377319000038 article-title: Synthesis and Structure of Corona[6](het)arenes Containing Mixed Bridge Units publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.6b01112 – volume: 56 start-page: 7151 year: 2017 ident: WOS:000402857800025 article-title: Corona[5]arenes Accessed by a Macrocycle-to-Macrocycle Transformation Route and a One-Pot Three-Component Reaction publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201703008 – volume: 21 start-page: 1700 year: 2011 ident: WOS:000286614100011 article-title: A "click-based" porous organic polymer from tetrahedral building blocks publication-title: JOURNAL OF MATERIALS CHEMISTRY doi: 10.1039/c0jm03483e – volume: 41 start-page: 898 year: 2002 ident: WOS:000174450300001 article-title: Dynamic covalent chemistry publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 7 start-page: 3370 year: 2016 ident: WOS:000374859300050 article-title: Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: dimer, tetramer, or interlocked complex? publication-title: CHEMICAL SCIENCE doi: 10.1039/c5sc04977f – volume: 49 start-page: 273 year: 1951 ident: WOS:A1951UE94700002 article-title: AROMATIC NUCLEOPHILIC SUBSTITUTION REACTIONS publication-title: CHEMICAL REVIEWS – start-page: 1533 year: 1997 ident: WOS:A1997XQ87700027 article-title: Ring-closing depolymerisation of aromatic polyethers publication-title: CHEMICAL COMMUNICATIONS – volume: 70 start-page: 439 year: 1970 ident: WOS:A1970G866000001 article-title: CYCLIC CARBOXYLIC MONOIMIDES publication-title: CHEMICAL REVIEWS – volume: 43 start-page: 1861 year: 2014 ident: WOS:000332037200007 article-title: Disulfide exchange: exposing supramolecular reactivity through dynamic covalent chemistry publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c3cs60326a – volume: 47 start-page: 69 year: 2018 ident: WOS:000419218700004 article-title: Molecular engineering of organic electroactive materials for redox flow batteries publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c7cs00569e |
SSID | ssj0065316 |
Score | 2.536415 |
Snippet | Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields.... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1023 |
SubjectTerms | 639/638/403/933 639/638/549/933 639/925 Analytical Chemistry Biochemistry Chemical synthesis Chemistry Chemistry and Materials Science Chemistry, Multidisciplinary Chemistry/Food Science Inorganic Chemistry Organic Chemistry Physical Chemistry Physical Sciences Polymers Regioselectivity Science & Technology Substitution reactions |
Title | Dynamic self-correcting nucleophilic aromatic substitution |
URI | https://link.springer.com/article/10.1038/s41557-018-0122-8 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000445129300008 https://www.ncbi.nlm.nih.gov/pubmed/30177780 https://www.proquest.com/docview/2110232401 https://www.proquest.com/docview/2099436372 |
Volume | 10 |
WOS | 000445129300008 |
WOSCitedRecordID | wos000445129300008 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQXRCnQtBSlEqdWFklsx4ZL1S4sqFJRVRVpb1E8k5xQsiXL_8fjPKCiWvWSSxw7mZn4m_G8AI5zJHRZqYXLZClUrRNhJdUiM6eaDCWmdpzg_OM6v7pR3xd6MRy4dUNY5bgnho2aWuQz8hM2VBj9k_TL8o_grlHsXR1aaLyALS5dxlJtFpPBlXv5CtlFRmvODJq8mtKedAykHHTJoVzeHrN_49IzZfOJo_SfEBXgaL4D24MeGX_tGf8aNqpmF17OxvZtb-DsvO81H3fVbS2Qm3AghzjHDVcwbpd8kIJxedeGmq1x5zeQEDXg-bQHN_OL37MrMTRKEKiMXgnMayKjKqsVOjZ2nfKWnLaUlk6l5AGozHJ0mJGxp8oZ60FIeZzmPFsisnIfNpu2qd5CrGtniJVELElh6rkoa_KrOJSoUFMEyUimAocq4tzM4rYI3mxpi56yhadswZQtbASfpkeWfQmNdYMPR9oXw9_UFY-8j-DjdNvTk50bZVO1936MV3WVzKXJIjjoeTat5jcxY4xNIvg8MvFx8jWvcvyUz9NswQke9KSgcEeQ_s-w2UAsLjWwerf-K9_Dq4wlM8QMHsLm6u6--uB1n5U7CgLur3Z-eQRb3y6uf_56AIZm_zE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXRHmmtBCkcgFZTWI7dpEQQluWLX2cWqk3E9vJqUq2zVZV_xS_kRnn0SLQikvPcexk_HkenhfAdu68s1khmc14wUQlE6a5r1imdqVXPlGVpQTno-N8dip-nMmzFfg15MJQWOXAEwOj9o2jO_IdMlRI-ifpl_kFo65R5F0dWmh0sDgob67RZGs_7-_h_r7Psum3k8mM9V0FmBNKLpjLK--VKLUUzpJlaAWaPVL7tLAi9citiyx31mVe6V1hlUaOLVCoUVKq915znPcBPBQcJTllpk-_D5w_RzyHbCYlJWUijV5UrndaEtwU5EmhY2j_6T_l4F_K7R3H7D9FYhB_0yfwuNdb468d0NZhpayfwtpkaBf3DD7tdb3t47Y8r5ijph-OQqrjmiomN3O6uHFxcdmEGrFxiwwrRCkgLp7D6b2Q8AWs1k1dvoJYVlZ5Ukpd4YVLETW88riKddwJJ30EyUAm4_qq5dQ849wE7znXpqOsQcoaoqzREXwYX5l3JTuWDd4caG_609uaW6xF8G58jPQkZ0pRl80VjkHVWvCcqyyCl92ejash01RK6SSCj8Mm3k6-5FO27-7zOFtwuge9LCj4EaT_M2zSE4tKGyw2lv_lW1ibnRwdmsP944PX8CgjlIZ4xU1YXVxelVuody3smwD2GH7e9-n6DUKsOFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQS9IN5NKRCkcgFZm8R27CIhBLtdtRRWFaJSbyG2k1OVbJutUP9afx0zzqNFoBWXnuPYyefxPDwvgJ3UOmuSXDKT8JyJUkZMc1eyRO1Kp1ykSkMJzt_m6f6x-HIiT9bgqs-FobDKnid6Ru1qS3fkYzJUSPpH8bjswiKOprOPizNGHaTI09q302hJ5LC4_IXmW_PhYIp7_SZJZns_Jvus6zDArFByyWxaOqdEoaWwhqxEI9AEktrFuRGxQ86dJ6k1NnFK7wqjNHJvgQKOElSdc5rjvHdgXZFVNIL1z3vzo--9HEiRun1uk5KS8pIGnyrX44bEOIV8UiAZWoP6T6n4l6p7w037TwHpheHsAdzvtNjwU0t2D2GtqB7BvUnfPO4xvJ-2ne7DpjgtmaUWIJYCrMOK6ifXC7rGsWF-XvuKsWGD7MvHLCCVPIHjWwHxKYyquio2IZSlUY5UVJs7YWOkIV46XMVYboWVLoCohymzXQ1zaqVxmnlfOtdZi2yGyGaEbKYDeDu8smgLeKwavN1jn3VnucmuKS-A18NjxJNcK3lV1Bc4BhVtwVOukgCetXs2rIYsVCmlowDe9Zt4PfmKT9m5uc_DbN4F77U0r-4HEP_PsEkHFhU6WG6t_stXcBdPVvb1YH74HDYSIlIfvLgNo-X5RfEClbCledlRewg_b_uA_QZwNT3q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+self-correcting+nucleophilic+aromatic+substitution&rft.jtitle=Nature+chemistry&rft.au=Ong%2C+Wen+Jie&rft.au=Swager%2C+Timothy+M&rft.date=2018-10-01&rft.issn=1755-4349&rft.eissn=1755-4349&rft.volume=10&rft.issue=10&rft.spage=1023&rft_id=info:doi/10.1038%2Fs41557-018-0122-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon |