Dynamic self-correcting nucleophilic aromatic substitution
Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields. However, the limited number of reactions amenable to dynamic covalent chemistry necessarily confines the scope and functionality of materials...
Saved in:
Published in | Nature chemistry Vol. 10; no. 10; pp. 1023 - 1030 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2018
Springer Nature Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Dynamic covalent chemistry, with its ability to correct synthetic dead-ends, allows for the synthesis of elaborate extended network materials in high yields. However, the limited number of reactions amenable to dynamic covalent chemistry necessarily confines the scope and functionality of materials synthesized. Here, we explore the dynamic and self-correcting nature of nucleophilic aromatic substitution (S
N
Ar), using
ortho
-aryldithiols and
ortho
-aryldifluorides that condense to produce redox-active thianthrene units. We demonstrate the facile construction of two-, three- and four-point junctions by reaction between a dithiol nucleophile and three different model electrophiles that produces molecules with two, three and four thianthrene moieties, respectively, in excellent yields. The regioselectivity observed is driven by thermodynamics; other connections form under kinetic control. We also show that the same chemistry can be extended to the synthesis of novel ladder macrocycles and porous polymer networks with Brunauer–Emmett–Teller surface area of up to 813 m
2
g
−1
.
Dynamic covalent chemistry offers promise for the formation of elaborate extended network materials in high yields, but the limited number of reactions available confines the scope and functionality of the materials synthesized. Now, nucleophilic aromatic substitution has been shown to be reversible, and thus self-correcting, enabling the easy synthesis of sulfur-rich materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1755-4330 1755-4349 1755-4349 |
DOI: | 10.1038/s41557-018-0122-8 |