Accurate isoform discovery with IsoQuant using long reads
Annotating newly sequenced genomes and determining alternative isoforms from long-read RNA data are complex and incompletely solved problems. Here we present IsoQuant—a computational tool using intron graphs that accurately reconstructs transcripts both with and without reference genome annotation....
Saved in:
Published in | Nature biotechnology Vol. 41; no. 7; pp. 915 - 918 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.07.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1087-0156 1546-1696 1546-1696 |
DOI | 10.1038/s41587-022-01565-y |
Cover
Loading…
Summary: | Annotating newly sequenced genomes and determining alternative isoforms from long-read RNA data are complex and incompletely solved problems. Here we present IsoQuant—a computational tool using intron graphs that accurately reconstructs transcripts both with and without reference genome annotation. For novel transcript discovery, IsoQuant reduces the false-positive rate fivefold and 2.5-fold for Oxford Nanopore reference-based or reference-free mode, respectively. IsoQuant also improves performance for Pacific Biosciences data.
IsoQuant predicts novel isoforms from long-read RNA sequencing. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1087-0156 1546-1696 1546-1696 |
DOI: | 10.1038/s41587-022-01565-y |