Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation

Substance P (SP), neurokinin A (NKA), and calcitonin gene-related peptide (CGRP) have potent proinflammatory effects in the airways. They are released from sensory nerve endings originating in jugular and dorsal root ganglia. However, the major sensory supply to the airways originates from the nodos...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 98; no. 10; pp. 2284 - 2291
Main Authors Fischer, A, McGregor, G P, Saria, A, Philippin, B, Kummer, W
Format Journal Article
LanguageEnglish
Published United States 15.11.1996
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Substance P (SP), neurokinin A (NKA), and calcitonin gene-related peptide (CGRP) have potent proinflammatory effects in the airways. They are released from sensory nerve endings originating in jugular and dorsal root ganglia. However, the major sensory supply to the airways originates from the nodose ganglion. In this study, we evaluated changes in neuropeptide biosynthesis in the sensory airway innervation of ovalbumin-sensitized and -challenged guinea pigs at the mRNA and peptide level. In the airways, a three- to fourfold increase of SP, NKA, and CGRP, was seen 24 h following allergen challenge. Whereas no evidence of local tachykinin biosynthesis was found 12 h after challenge, increased levels of preprotachykinin (PPT)-A mRNA (encoding SP and NKA) were found in nodose ganglia. Quantitative in situ hybridization indicated that this increase could be accounted for by de novo induction of PPT-A mRNA in nodose ganglion neurons. Quantitative immunohistochemistry showed that 24 h after challenge, the number of tachykinin-immunoreactive nodose ganglion neurons had increased by 25%. Their projection to the airways was shown. Changes in other sensory ganglia innervating the airways were not evident. These findings suggest that an induction of sensory neuropeptides in nodose ganglion neurons is crucially involved in the increase of airway hyperreactivity in the late response to allergen challenge.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9738
DOI:10.1172/jci119039