Arctic soil methane sink increases with drier conditions and higher ecosystem respiration

Arctic wetlands are known methane (CH 4 ) emitters but recent studies suggest that the Arctic CH 4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH 4 using >40,000 hourly flux observations and spatially distributed flux measu...

Full description

Saved in:
Bibliographic Details
Published inNature climate change Vol. 13; no. 10; pp. 1095 - 1104
Main Authors Voigt, Carolina, Virkkala, Anna-Maria, Hould Gosselin, Gabriel, Bennett, Kathryn A., Black, T. Andrew, Detto, Matteo, Chevrier-Dion, Charles, Guggenberger, Georg, Hashmi, Wasi, Kohl, Lukas, Kou, Dan, Marquis, Charlotte, Marsh, Philip, Marushchak, Maija E., Nesic, Zoran, Nykänen, Hannu, Saarela, Taija, Sauheitl, Leopold, Walker, Branden, Weiss, Niels, Wilcox, Evan J., Sonnentag, Oliver
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Arctic wetlands are known methane (CH 4 ) emitters but recent studies suggest that the Arctic CH 4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH 4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH 4 occurred at all sites at rates of 0.092 ± 0.011 mgCH 4  m −2  h −1 (mean ± s.e.), CH 4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH 4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH 4 uptake by Arctic soils, providing a negative feedback to global climate change. The Arctic is estimated to be a source of atmospheric methane but the sink capacity may be underestimated. This study shows that methane uptake in well-drained Arctic soils is driven by soil moisture and carbon availability, indicating a potential increased methane sink under climate change.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1758-678X
1758-6798
DOI:10.1038/s41558-023-01785-3