Nonrelativistic Limit of Generalized MIT Bag Models and Spectral Inequalities

For a family of self-adjoint Dirac operators - i c ( α · ∇ ) + c 2 2 subject to generalized MIT bag boundary conditions on domains in R 3 , it is shown that the nonrelativistic limit in the norm resolvent sense is the Dirichlet Laplacian. This allows to transfer spectral geometry results for Dirichl...

Full description

Saved in:
Bibliographic Details
Published inMathematical physics, analysis, and geometry Vol. 27; no. 3; p. 12
Main Authors Behrndt, Jussi, Frymark, Dale, Holzmann, Markus, Stelzer-Landauer, Christian
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For a family of self-adjoint Dirac operators - i c ( α · ∇ ) + c 2 2 subject to generalized MIT bag boundary conditions on domains in R 3 , it is shown that the nonrelativistic limit in the norm resolvent sense is the Dirichlet Laplacian. This allows to transfer spectral geometry results for Dirichlet Laplacians to Dirac operators for large c .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1385-0172
1572-9656
1572-9656
DOI:10.1007/s11040-024-09484-x