Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review

Water is a vital resource that is required for social and economic development. A rapid increase in industrialization and numerous anthropogenic activities have resulted in severe water contamination. In particular, the contamination caused by heavy metal discharge has a negative impact on human hea...

Full description

Saved in:
Bibliographic Details
Published inGels Vol. 8; no. 5; p. 263
Main Authors Darban, Zenab, Shahabuddin, Syed, Gaur, Rama, Ahmad, Irfan, Sridewi, Nanthini
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.04.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Water is a vital resource that is required for social and economic development. A rapid increase in industrialization and numerous anthropogenic activities have resulted in severe water contamination. In particular, the contamination caused by heavy metal discharge has a negative impact on human health and the aquatic environment due to the non-biodegradability, toxicity, and carcinogenic effects of heavy metals. Thus, there is an immediate need to recycle wastewater before releasing heavy metals into water bodies. Hydrogels, as potent adsorbent materials, are a good contenders for treating toxic heavy metals in wastewater. Hydrogels are a soft matter formed via the cross-linking of natural or synthetic polymers to develop a three-dimensional mesh structure. The inherent properties of hydrogels, such as biodegradability, swell-ability, and functionalization, have made them superior applications for heavy metal removal. In this review, we have emphasized the recent development in the synthesis of hydrogel-based adsorbent materials. The review starts with a discussion on the methods used for recycling wastewater. The discussion then shifts to properties, classification based on various criteria, and surface functionality. In addition, the synthesis and adsorption mechanisms are explained in detail with the understanding of the regeneration, recovery, and reuse of hydrogel-based adsorbent materials. Therefore, the cost-effective, facile, easy to modify and biodegradable hydrogel may provide a long-term solution for heavy metal removal.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2310-2861
2310-2861
DOI:10.3390/gels8050263