Operational characteristics of full random effects modelling (‘frem’) compared to stepwise covariate modelling (‘scm’)

An adequate covariate selection is a key step in population pharmacokinetic modelling. In this study, the automated stepwise covariate modelling technique (‘scm’) was compared to full random effects modelling (‘frem’). We evaluated the power to identify a ‘true’ covariate (covariate with highest cor...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmacokinetics and pharmacodynamics Vol. 50; no. 4; pp. 315 - 326
Main Authors Amann, Lisa F., Wicha, Sebastian G.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An adequate covariate selection is a key step in population pharmacokinetic modelling. In this study, the automated stepwise covariate modelling technique (‘scm’) was compared to full random effects modelling (‘frem’). We evaluated the power to identify a ‘true’ covariate (covariate with highest correlation to the pharmacokinetic parameter), precision, and accuracy of the parameter-covariate estimates. Furthermore, the predictive performance of the final models was assessed. The scenarios varied in covariate effect sizes, number of individuals (n = 20–500) and covariate correlations (0–90% cov-corr). The PsN ‘frem’ routine provides a 90% confidence intervals around the covariate effects. This was used to evaluate its operational characteristics for a statistical backward elimination procedure, defined as ‘frem posthoc ’ and to facilitate the comparison to ‘scm’. ‘Frem posthoc ’ had a higher power to detect the true covariate with lower bias in small n studies compared to ‘scm’, applied with commonly used settings (forward p < 0.05, backward p < 0.01). This finding was vice versa in a statistically similar setting. For ‘frem posthoc ’, power, precision and accuracy of the covariate coefficient increased with higher number of individuals and covariate effect magnitudes. Without a backward elimination step ‘frem’ models provided unbiased coefficients with highly imprecise coefficients in small n datasets. Yet, precision was superior to final ‘scm’ model precision obtained using common settings. We conclude that ‘frem posthoc ’ is also a suitable method to guide covariate selection, although intended to serve as a full model approach. However, a deliberated selection of automated methods is essential for the modeller and using those methods in small datasets needs to be taken with caution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1567-567X
1573-8744
DOI:10.1007/s10928-023-09856-w