Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues
In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our...
Saved in:
Published in | Materials Science & Engineering C Vol. 59; pp. 1168 - 1180 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our understanding of breast development. Indeed, biologically relevant 3D structures that combine mammary cells and engineered matrices have improved our knowledge of mammary tissue growth, organization, and differentiation. Several polymeric biomaterials have been used as scaffolds to engineer 3D mammary tissues. Among those, silk fibroin-based biomaterials have many biologically relevant properties and have been successfully used in multiple medical applications. Here, we review the recent advances in engineered scaffolds with an emphasis on breast-like tissue generation and the benefits of modified silk-based scaffolds.
•Promising biocompatible silk fibroin biomaterials in tissue engineering•Improved three-dimensional mammary models using silk fibroin-based scaffolds•Formation of organized acinar-like structures by mammary epithelial cells•Better understanding of breast cancer development and progression |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0928-4931 1873-0191 |
DOI: | 10.1016/j.msec.2015.10.007 |