Agglomeration: when folded proteins clump together
Protein self-association is a widespread phenomenon that results in the formation of multimeric protein structures with critical roles in cellular processes. Protein self-association can lead to finite protein complexes or open-ended, and potentially, infinite structures. This review explores the co...
Saved in:
Published in | Biophysical reviews Vol. 15; no. 6; pp. 1987 - 2003 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Protein self-association is a widespread phenomenon that results in the formation of multimeric protein structures with critical roles in cellular processes. Protein self-association can lead to finite protein complexes or open-ended, and potentially, infinite structures. This review explores the concept of protein agglomeration, a process that results from the infinite self-assembly of folded proteins. We highlight its differences from other better-described processes with similar macroscopic features, such as aggregation and liquid-liquid phase separation. We review the sequence, structural, and biophysical factors influencing protein agglomeration. Lastly, we briefly discuss the implications of agglomeration in evolution, disease, and aging. Overall, this review highlights the need to study protein agglomeration for a better understanding of cellular processes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 1867-2450 1867-2469 |
DOI: | 10.1007/s12551-023-01172-4 |