Manipulation of a Nuclear NAD+ Salvage Pathway Delays Aging without Altering Steady-state NAD+ Levels

Yeast deprived of nutrients exhibit a marked life span extension that requires the activity of the NAD+-dependent histone deacetylase, Sir2p. Here we show that increased dosage of NPT1, encoding a nicotinate phosphoribosyltransferase critical for the NAD+ salvage pathway, increases Sir2-dependent si...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 277; no. 21; pp. 18881 - 18890
Main Authors Anderson, Rozalyn M., Bitterman, Kevin J., Wood, Jason G., Medvedik, Oliver, Cohen, Haim, Lin, Stephen S., Manchester, Jill K., Gordon, Jeffrey I., Sinclair, David A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.05.2002
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Yeast deprived of nutrients exhibit a marked life span extension that requires the activity of the NAD+-dependent histone deacetylase, Sir2p. Here we show that increased dosage of NPT1, encoding a nicotinate phosphoribosyltransferase critical for the NAD+ salvage pathway, increases Sir2-dependent silencing, stabilizes the rDNA locus, and extends yeast replicative life span by up to 60%. Both NPT1 and SIR2 provide resistance against heat shock, demonstrating that these genes act in a more general manner to promote cell survival. We show that Npt1 and a previously uncharacterized salvage pathway enzyme, Nma2, are both concentrated in the nucleus, indicating that a significant amount of NAD+ is regenerated in this organelle. Additional copies of the salvage pathway genes, PNC1, NMA1, and NMA2, increase telomeric and rDNA silencing, implying that multiple steps affect the rate of the pathway. Although SIR2-dependent processes are enhanced by additional NPT1, steady-state NAD+ levels and NAD+/NADH ratios remain unaltered. This finding suggests that yeast life span extension may be facilitated by an increase in the availability of NAD+ to Sir2, although not through a simple increase in steady-state levels. We propose a model in which increased flux through the NAD+ salvage pathway is responsible for the Sir2-dependent extension of life span.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111773200