The effect of the 3D printout filling parameter on the impact strength of elements made with the FDM method

The paper discusses the aspects of potential use of 3D printing technology in the process of manufacturing elements with different layer fillings. In 3D printing technology, the denser the percentage of filling a material, the higher the mechanical strength of a given element. However, in the litera...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Materials Science and Engineering Vol. 710; no. 1; pp. 12027 - 12035
Main Authors Korga, S, Barszcz, M, Zgryza, Ł
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The paper discusses the aspects of potential use of 3D printing technology in the process of manufacturing elements with different layer fillings. In 3D printing technology, the denser the percentage of filling a material, the higher the mechanical strength of a given element. However, in the literature on the subject, the dependence on these parameters for additive technology has not been unequivocally determined. Therefore, the aim of the study is to find a correlation between the internal structure of the elements understood as a percentage of filling the material produced by 3D printing technology and the impact strength achieved by these elements. To carry out the research process, sets of polymeric samples were prepared using 3D FDM printing. The shape and dimensions of the samples were determined in accordance with the PN-EN 10045-1 standard. The samples were made by means of the Printo H3 device with a closed working chamber, using ABS polymer filament. The samples were filled with a percentage interval of 10%. Impact strength tests of polymeric samples were carried out on a Charpy hammer stand adapted for this purpose. In this way, the results concerning the breaking energy were collected for particular groups of samples. The collected data allowed us to determine the relationship between the percentage of filling the sample and the energy absorbed by the sample. The results provided the basis for conclusions and recommendations regarding one of the most important technological parameters - the percentage of printed element filling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/710/1/012027