Interaction Properties of Human Mannan-Binding Lectin (MBL)-Associated Serine Proteases-1 and -2, MBL-Associated Protein 19, and MBL
The mannan-binding lectin (MBL) activation pathway of complement plays an important role in the innate immune defense against pathogenic microorganisms. In human serum, two MBL-associated serine proteases (MASP-1, MASP-2) and MBL-associated protein 19 (MAp19) were found to be associated with MBL. Wi...
Saved in:
Published in | The Journal of immunology (1950) Vol. 166; no. 8; pp. 5068 - 5077 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Assoc Immnol
15.04.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The mannan-binding lectin (MBL) activation pathway of complement plays an important role in the innate immune defense against pathogenic microorganisms. In human serum, two MBL-associated serine proteases (MASP-1, MASP-2) and MBL-associated protein 19 (MAp19) were found to be associated with MBL. With a view to investigate the interaction properties of these proteins, human MASP-1, MASP-2, MAp19, as well as the N-terminal complement subcomponents C1r/C1s, Uegf, and bone morphogenetic protein-1-epidermal growth factor (CUB-EGF) segments of MASP-1 and MASP-2, were expressed in insect or human kidney cells, and MBL was isolated from human serum. Sedimentation velocity analysis indicated that the MASP-1 and MASP-2 CUB-EGF segments and the homologous protein MAp19 all behaved as homodimers (2.8-3.2 S) in the presence of Ca(2+). Although the latter two dimers were not dissociated by EDTA, their physical properties were affected. In contrast, the MASP-1 CUB-EGF homodimer was not sensitive to EDTA. The three proteins and full-length MASP-1 and MASP-2 showed no interaction with each other as judged by gel filtration and surface plasmon resonance spectroscopy. Using the latter technique, MASP-1, MASP-2, their CUB-EGF segments, and MAp19 were each shown to bind to immobilized MBL, with K:(D) values of 0.8 nM (MASP-2), 1.4 nM (MASP-1), 13.0 nM (MAp19 and MASP-2 CUB-EGF), and 25.7 nM (MASP-1 CUB-EGF). The binding was Ca(2+)-dependent and fully sensitive to EDTA in all cases. These data indicate that MASP-1, MASP-2, and MAp19 each associate as homodimers, and individually form Ca(2+)-dependent complexes with MBL through the CUB-EGF pair of each protein. This suggests that distinct MBL/MASP complexes may be involved in the activation or regulation of the MBL pathway. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.166.8.5068 |