A simple regulatory architecture allows learning the statistical structure of a changing environment

Bacteria live in environments that are continuously fluctuating and changing. Exploiting any predictability of such fluctuations can lead to an increased fitness. On longer timescales, bacteria can 'learn' the structure of these fluctuations through evolution. However, on shorter timescale...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 10
Main Authors Landmann, Stefan, Holmes, Caroline M, Tikhonov, Mikhail
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 07.09.2021
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bacteria live in environments that are continuously fluctuating and changing. Exploiting any predictability of such fluctuations can lead to an increased fitness. On longer timescales, bacteria can 'learn' the structure of these fluctuations through evolution. However, on shorter timescales, inferring the statistics of the environment and acting upon this information would need to be accomplished by physiological mechanisms. Here, we use a model of metabolism to show that a simple generalization of a common regulatory motif (end-product inhibition) is sufficient both for learning continuous-valued features of the statistical structure of the environment and for translating this information into predictive behavior; moreover, it accomplishes these tasks near-optimally. We discuss plausible genetic circuits that could instantiate the mechanism we describe, including one similar to the architecture of two-component signaling, and argue that the key ingredients required for such predictive behavior are readily accessible to bacteria.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.67455