Genetic variations in the one-carbon metabolism pathway genes and susceptibility to hepatocellular carcinoma risk: a case–control study

Hepatocellular carcinoma (HCC) is the sixth common cancer and the third common cause of cancer mortality worldwide. However, the exact molecular mechanism of HCC remains uncertain. Many enzymes are involved in one-carbon metabolism (OCM), and single nucleotide polymorphisms (SNPs) in the correspondi...

Full description

Saved in:
Bibliographic Details
Published inTumor biology Vol. 36; no. 2; pp. 997 - 1002
Main Authors Zhang, Heng, Liu, Chunhe, Han, Yu-chen, Ma, Zuohong, Zhang, Haiyan, Ma, Yinan, Liu, Xiaofang
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hepatocellular carcinoma (HCC) is the sixth common cancer and the third common cause of cancer mortality worldwide. However, the exact molecular mechanism of HCC remains uncertain. Many enzymes are involved in one-carbon metabolism (OCM), and single nucleotide polymorphisms (SNPs) in the corresponding genes may play a role in liver carcinogenesis. In this study, we enrolled 1500 HCC patients and 1500 cancer-free controls, which were frequency-matched by age, gender, and HBV infection status. Then eight SNPs from seven OCM genes (MTHFR, MTR, MTRR, FTHFD, GART, SHMT, and CBS) were evaluated. Results showed that six SNPs (MTHFR rs1801133, MTRR rs2287780, MTRR rs10380, FTHFD rs1127717, GART rs8971, and SHMT rs1979277) were significantly associated with HCC risk in Chinese population, with P values range from 2.26 × 10 −4 to 0.035). The most significant association was detected for GART rs8971. Compared with individuals with the TT genotype, the age- and sex-adjusted odds ratio (OR) for developing HCC was 1.44 (95 % confidence interval (CI): 1.03–2.02) among those with the CC genotype and 1.30 (95 % CI: 1.10–1.53) for those with CT genotype. Under the log-additive model, each additional copy of minor allele C was associated with a 1.28-fold increased risk of HCC (OR = 1.28, 95 % CI: 1.12–1.45). These findings indicated that genetic variants in OCM genes might contribute to HCC susceptibility.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1010-4283
1423-0380
DOI:10.1007/s13277-014-2725-z