Glyphosate and Aminomethylphosphonic Acid (AMPA) Modulate Glutathione S-Transferase in Non-Tumorigenic Prostate Cells

Glyphosate (GLY) was developed in the early 1970s and has become the most used broad-spectrum herbicide in the world so far. Its main metabolite is aminomethylphosphonic acid (AMPA), and the accumulation of GLY and its derivative compounds raises some concerns regarding possible health outcomes. In...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 24; no. 7; p. 6323
Main Authors Borges, Dayanne Silva, Vecchi, Lara, Barros, Deysse Carla Tolentino, Arruda, Vinícius Marques, Ferreira, Helen Soares Valença, da Silva, Matheus Fernandes, Guerra, Joyce Ferreira da Costa, Siqueira, Raoni Pais, Araújo, Thaise Gonçalves
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glyphosate (GLY) was developed in the early 1970s and has become the most used broad-spectrum herbicide in the world so far. Its main metabolite is aminomethylphosphonic acid (AMPA), and the accumulation of GLY and its derivative compounds raises some concerns regarding possible health outcomes. In this study, we aimed to evaluate the effects of GLY and AMPA on prostate cell lines by evaluating cell viability, proliferation, gene and protein expression, and cellular pathways involved in the response to oxidative stress. Our results indicated that GLY and AMPA reduced the cell viability of tumorigenic and non-tumorigenic prostate cell lines only at higher concentrations (10 mM GLY and 20 mM AMPA). In contrast, both compounds increased the clonogenicity of non-tumorigenic PNT2 cells, mainly at concentrations below the IC (5 mM GLY and 10 mM AMPA). Moreover, treatment of non-tumorigenic cells with low concentrations of GLY or AMPA for 48 h increased GSTM3 expression at both mRNA and protein levels. In contrast, the treatments decrease the GST activity and induced an increase in oxidative stress, mainly at lower concentrations. Therefore, both compounds can cause cellular damage even at lower concentrations in non-tumorigenic PNT2 cells, mainly affecting cell proliferation and oxidative stress.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms24076323