Understanding Tomato Peelability
Approximately 75% of all tomatoes in the United States are consumed as processed and 25% as fresh. One of the first steps during processing involves removal of the peel and, unfortunately, more than 25% of the fruits (as measured by total weight) can be lost due to overpeeling. Additionally, convent...
Saved in:
Published in | Comprehensive reviews in food science and food safety Vol. 15; no. 3; pp. 619 - 632 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1541-4337 1541-4337 |
DOI | 10.1111/1541-4337.12195 |
Cover
Loading…
Summary: | Approximately 75% of all tomatoes in the United States are consumed as processed and 25% as fresh. One of the first steps during processing involves removal of the peel and, unfortunately, more than 25% of the fruits (as measured by total weight) can be lost due to overpeeling. Additionally, conventional peeling applications have a negative environmental impact. Given the great potential economic benefits, many scientists have conducted research to attempt optimizing or predicting peeling performance when processing tomatoes. The literature regarding tomato peelability is contradictory in many cases; and several topics have been subject to ample debate over the years. Divergent conclusions are probably not due to faulty investigations, but rather to the extreme variability found among tomato cultivars, the effect of growing seasons, and maybe even the effect of climatic conditions on the day of harvest or during transportation to the processing plants. This review provides an in‐depth background needed for a better understanding of tomato physiology, maturation, and composition, as these could possibly influence the ease of peeling or “peelability.” The research studies directly involved with peeling tomatoes and predicting peelability are discussed in this paper as well. Different peeling methods, peeling grading scales, and fruit tagging procedures are presented, as well as experiments evaluating the effect that fruit defects, maturity, growing conditions, and other factors can have on the ease of peeling. Novel approaches for peelability prediction by means of spectroscopic and magnetic resonance technology are also discussed in this review. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1541-4337 1541-4337 |
DOI: | 10.1111/1541-4337.12195 |