Systematic evaluation of spatial resolution and gamma criteria for quality assurance with detector arrays in stereotactic radiosurgery
Purpose To characterize detector array spacing and gamma index for quality assurance (QA) of stereotactic radiosurgery (SRS) deliveries. Use the Nyquist theorem to determine the required detector spacing in SRS fields, and find optimal gamma indices to detect MLC errors using the SRS MapCHECK, ArcCH...
Saved in:
Published in | Journal of applied clinical medical physics Vol. 25; no. 2; pp. e14274 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.02.2024
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose
To characterize detector array spacing and gamma index for quality assurance (QA) of stereotactic radiosurgery (SRS) deliveries. Use the Nyquist theorem to determine the required detector spacing in SRS fields, and find optimal gamma indices to detect MLC errors using the SRS MapCHECK, ArcCHECK, and a portal imaging device (EPID).
Methods
The required detector spacing was determined via Fourier analysis of small radiation fields and profiles of typical SRS treatment plans. The clinical impact of MLC errors of 0.5, 1, and 2 mm was evaluated. Global gamma (low‐dose threshold 10%) was evaluated for the three detector systems using various combinations of the distance to agreement and the dose difference.
Results
While MLC errors only slightly affected mean dose to PTV and a 2 mm thick surrounding structure (PTV_2 mm), significant PTV underdose incurred with increase in maximum dose to PTV_2 mm. Gamma indices with highest sensitivity to the introduced errors at 95% tolerance level for plans on target volumes of 3.2 cm3 (plan 3 cc) and 35.02 cm3 (plan 35 cc) were 2%/1 mm for the SRS MapCHECK and 2%/3 mm for the ArcCHECK, with 3%/1 mm (plan 3cc) and 2%/1 mm (plan 35cc) for the EPID. Drops in passing rates for a 2 mm MLC error were (46.2%, 41.6%) for the SRS MapCHECK and (12.2%, 4.2%) for the ArcCHECK for plan 3cc and plan 35cc, respectively. For Portal Dose, values were 4.5% (plan 3cc) and 7% (plan 35cc). The Nyquist frequency of two SRS dose distributions lie between 0.26 and 0.1 mm−1, corresponding to detector spacings of 1.9 and 5 mm. Evaluation of SRS MapCHECK data with doubled detector density indicates that increased detector density may reduce the system's sensitivity to errors, necessitating a tighter gamma index.
Conclusions
The present results give insight on the performance of detector arrays and gamma indices for the investigated detectors during SRS QA. |
---|---|
Bibliography: | Ann‐Kathrin Stedem, Mark Tutty, and Ndimofor Chofor have contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1526-9914 1526-9914 |
DOI: | 10.1002/acm2.14274 |