Quasi-Crystal Metasurface for Simultaneous Half- and Quarter-Wave Plate Operation
We present a quasi-crystal metasurface that can simultaneously work as efficient cross-polarizer and circular polarizer for wide range of frequencies. The quasi-crystal technique benefits from individual resonant response of anisotropic patch and the coupled response due to periodic perturbations in...
Saved in:
Published in | Scientific reports Vol. 8; no. 1; pp. 15743 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.10.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present a quasi-crystal metasurface that can simultaneously work as efficient cross-polarizer and circular polarizer for wide range of frequencies. The quasi-crystal technique benefits from individual resonant response of anisotropic patch and the coupled response due to periodic perturbations in the square lattice. It is shown that quasi-crystals offer broadband response for cross-polarization as well as high efficiency circular-polarization conversion of reflected fields. The quasi-crystal metasurface achieves cross-polarization (above −3 dB) for two broad frequency bands between 10.28–15.50 GHz and 16.21–18.80 GHz. Furthermore, the proposed metasurface can simultaneously work as high efficiency circular-polarizer from 10.15–10.27 GHz and 15.51–16.20 GHz. The metasurface design is also optimized to suppress co-polarization below −10 dB between 10.5–15.5 GHz. This metasurface can find potential applications in reflector antennas, imaging microscopy, remote sensing, and control of radar cross-section etc. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-34142-y |