Quasi-Crystal Metasurface for Simultaneous Half- and Quarter-Wave Plate Operation

We present a quasi-crystal metasurface that can simultaneously work as efficient cross-polarizer and circular polarizer for wide range of frequencies. The quasi-crystal technique benefits from individual resonant response of anisotropic patch and the coupled response due to periodic perturbations in...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 15743 - 10
Main Authors Mustafa, Meraj-E-, Amin, Muhammad, Siddiqui, Omar, Tahir, Farooq A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.10.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a quasi-crystal metasurface that can simultaneously work as efficient cross-polarizer and circular polarizer for wide range of frequencies. The quasi-crystal technique benefits from individual resonant response of anisotropic patch and the coupled response due to periodic perturbations in the square lattice. It is shown that quasi-crystals offer broadband response for cross-polarization as well as high efficiency circular-polarization conversion of reflected fields. The quasi-crystal metasurface achieves cross-polarization (above −3 dB) for two broad frequency bands between 10.28–15.50 GHz and 16.21–18.80 GHz. Furthermore, the proposed metasurface can simultaneously work as high efficiency circular-polarizer from 10.15–10.27 GHz and 15.51–16.20 GHz. The metasurface design is also optimized to suppress co-polarization below −10 dB between 10.5–15.5 GHz. This metasurface can find potential applications in reflector antennas, imaging microscopy, remote sensing, and control of radar cross-section etc.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-34142-y