Leea macrophylla root extract upregulates the mRNA expression for antioxidative enzymes and repairs the necrosis of pancreatic β-cell and kidney tissues in fructose-fed Type 2 diabetic rats

This research investigated the functional food effect of Leea macrophylla (Roxb.) ex Hornem root extract on pancreatic necrosis in Streptozotocin-induced type-2 diabetes. Prior to animal intervention, Leea macrophylla root extract (LMR) was subjected to GC-MS analysis. Across a three-week interventi...

Full description

Saved in:
Bibliographic Details
Published inBiomedicine & pharmacotherapy Vol. 110; pp. 74 - 84
Main Authors Mawa, Jannatul, Rahman, Md. Atiar, Hashem, M.A., Juwel Hosen, Md
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.02.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This research investigated the functional food effect of Leea macrophylla (Roxb.) ex Hornem root extract on pancreatic necrosis in Streptozotocin-induced type-2 diabetes. Prior to animal intervention, Leea macrophylla root extract (LMR) was subjected to GC-MS analysis. Across a three-week intervention of fructose-fed albino model with LMR50, LMR100 and LMR200, the fluid & food intake, body weight changes, weekly blood glucose concentrations and oral glucose tolerance (OGT) were recorded. The animals were sacrificed after intervention and serum was analyzed for insulin, ALT, AST, LDH, CK-MB, creatinine, uric acid and lipid profile and liver section was used for glycogen estimation. Changes of pancreas and kidney architecture were evaluated by histopathology. Relative mRNA for superoxide dismutase 1 (SOD1), glutathione peroxidase (GPx) and catalase (CAT) were quantitated using assay kits. Results showed that fluid and food intake, weekly blood glucose level, ALT, AST, LDH, CK-MB level were significantly (p < 0.05) decreased in LMR50 group. Conversely, the glucose tolerance ability, liver glycogen level, serum insulin, organ weight and pancreatic morphology were improved significantly in this group. Diameter of islet of Langerhans (μm), area occupied by β-cell/ islet of Langerhans (μm2) and number of β-cells/islet of Langerhans were amazingly improved to the NC animals. Expressions of mRNA for SOD1 and CAT from liver tissue have been found to be increased multifold while GPx was remained unchanged. The data suggests that L. macrophylla root extract could be very potential as functional food to modulate pancreatic action.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2018.11.033