Epigenetic silencing of IRF1 dysregulates type III interferon responses to respiratory virus infection in epithelial to mesenchymal transition

Chronic oxidative injury produced by airway disease triggers a transforming growth factor-β (TGF-β)-mediated epigenetic reprogramming known as the epithelial–mesenchymal transition (EMT). We observe that EMT silences protective mucosal interferon (IFN)-I and III production associated with enhanced r...

Full description

Saved in:
Bibliographic Details
Published inNature microbiology Vol. 2; no. 8; p. 17086
Main Authors Yang, Jun, Tian, Bing, Sun, Hong, Garofalo, Roberto P., Brasier, Allan R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.06.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chronic oxidative injury produced by airway disease triggers a transforming growth factor-β (TGF-β)-mediated epigenetic reprogramming known as the epithelial–mesenchymal transition (EMT). We observe that EMT silences protective mucosal interferon (IFN)-I and III production associated with enhanced rhinovirus (RV) and respiratory syncytial virus (RSV) replication. Mesenchymal transitioned cells are defective in inducible interferon regulatory factor 1 (IRF1) expression by occluding RelA and IRF3 access to the promoter. IRF1 is necessary for the expression of type III IFNs (IFNLs 1 and 2/3). Induced by the EMT, zinc finger E-box binding homeobox 1 (ZEB1) binds and silences IRF1 . Ectopic ZEB1 is sufficient for IRF1 silencing, whereas ZEB1 knockdown partially restores IRF1-IFNL upregulation. ZEB1 silences IRF1 through the catalytic activity of the enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), forming repressive H3K27(me3) marks. We observe that IRF1 expression is mediated by ZEB1 de-repression, and our study demonstrates how airway remodelling/fibrosis is associated with a defective mucosal antiviral response through ZEB1-initiated epigenetic silencing. This study explores the mechanism for enhanced respiratory virus replication in airway epithelial cells subject to mesenchymal reprogramming, implicating a role for epigenetic silencing interferon pathways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2058-5276
2058-5276
DOI:10.1038/nmicrobiol.2017.86