ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis

Reactive oxygen species (ROS) mediate lipid peroxidation and produce 4-hydroxynonenal and other related products, which play an important role in the process of cell death, including apoptosis, autophagy, and ferroptosis. Lipid peroxidation of phospholipid bilayers can promote mitochondrial apoptosi...

Full description

Saved in:
Bibliographic Details
Published inArchives of toxicology Vol. 97; no. 6; pp. 1439 - 1451
Main Authors Wang, Bingqing, Wang, Yue, Zhang, Jing, Hu, Chang, Jiang, Jun, Li, Yiming, Peng, ZhiYong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Reactive oxygen species (ROS) mediate lipid peroxidation and produce 4-hydroxynonenal and other related products, which play an important role in the process of cell death, including apoptosis, autophagy, and ferroptosis. Lipid peroxidation of phospholipid bilayers can promote mitochondrial apoptosis, endoplasmic reticulum stress, and other complex molecular signaling pathways to regulate apoptosis. Lipid peroxidation and its products also act at different stages of autophagy, affecting the formation of autophagosomes and the recruitment of downstream proteins. In addition, we discuss the important role of ROS and lipid peroxides in ferroptosis and the regulatory role of nuclear factor erythroid 2-related factor 2 in ferroptosis under a background of oxidation. Finally, from the perspectives of promotion, inhibition, transformation, and common upstream molecules, we summarized the crosstalk among apoptosis, autophagy, and ferroptosis in the context of ROS. Our review discusses the role of ROS and lipid peroxidation in apoptosis, autophagy, and ferroptosis and their possible crosstalk mechanisms, so as to provide new insights and directions for the study of diseases related to pathological cell death. This review also has referential significance for studying the exact mechanism of ferroptosis mediated by lipid peroxidation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0340-5761
1432-0738
1432-0738
DOI:10.1007/s00204-023-03476-6