Deep learning, reinforcement learning, and world models
Deep learning (DL) and reinforcement learning (RL) methods seem to be a part of indispensable factors to achieve human-level or super-human AI systems. On the other hand, both DL and RL have strong connections with our brain functions and with neuroscientific findings. In this review, we summarize t...
Saved in:
Published in | Neural networks Vol. 152; pp. 267 - 275 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deep learning (DL) and reinforcement learning (RL) methods seem to be a part of indispensable factors to achieve human-level or super-human AI systems. On the other hand, both DL and RL have strong connections with our brain functions and with neuroscientific findings. In this review, we summarize talks and discussions in the “Deep Learning and Reinforcement Learning” session of the symposium, International Symposium on Artificial Intelligence and Brain Science. In this session, we discussed whether we can achieve comprehensive understanding of human intelligence based on the recent advances of deep learning and reinforcement learning algorithms. Speakers contributed to provide talks about their recent studies that can be key technologies to achieve human-level intelligence. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0893-6080 1879-2782 1879-2782 |
DOI: | 10.1016/j.neunet.2022.03.037 |