Case report: Unilateral optic nerve aplasia and developmental hemi-chiasmal dysplasia with VEP misrouting

Purpose To describe the trans-occipital asymmetries of pattern and flash visual evoked potentials (VEPs), in an infant with MRI findings of unilateral optic nerve aplasia and hemi-chiasm dysplasia. Methods A child with suspected left cystic microphthalmia, left microcornea, left unilateral optic ner...

Full description

Saved in:
Bibliographic Details
Published inDocumenta ophthalmologica Vol. 142; no. 2; pp. 247 - 255
Main Authors Handley, Sian E., Marmoy, Oliver R., Gore, Sri K., Mankad, Kshitij, Thompson, Dorothy A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose To describe the trans-occipital asymmetries of pattern and flash visual evoked potentials (VEPs), in an infant with MRI findings of unilateral optic nerve aplasia and hemi-chiasm dysplasia. Methods A child with suspected left cystic microphthalmia, left microcornea, left unilateral optic nerve aplasia, and hemi-chiasm underwent a multi-channel VEP assessment with pattern reversal, pattern onset, and flash stimulation at the age of 16 weeks. Results There was no VEP evidence of any post-retinal visual pathway activation from left eye with optic nerve aplasia. The VEP trans-occipital distribution from the functional right eye was skewed markedly across the midline, in keeping with significant misrouting of optic nerve fibres at the chiasm. This was supported by the anatomical trajectory of the optic chiasm and tracts seen on MRI. Conclusion This infant has chiasmal misrouting in association with unilateral optic nerve aplasia and unilateral microphthalmos. Chiasmal misrouting has not been found in patients with microphthalmos or anophthalmos, but has been reported after early eye loss in animal models. Our findings contribute to our understanding of the discrepancy between the visual pathway physiology of human unilateral microphthalmia and animal models.
Bibliography:ObjectType-Case Study-2
SourceType-Scholarly Journals-1
ObjectType-Feature-4
content type line 23
ObjectType-Report-1
ObjectType-Article-3
ISSN:0012-4486
1573-2622
DOI:10.1007/s10633-020-09788-7