5G-28 GHz Signal Transmission Over Hybrid All-Optical FSO/RF Link in Dusty Weather Conditions

5G wireless networks promise to provide massive bandwidth for various types of connections. In such networks, the backhaul/fronthaul sections should be easy to deploy and support the required high bandwidth. To improve the free space optic (FSO) link bandwidth so that it can replace fiber cables and...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 24404 - 24410
Main Authors Esmail, Maged A., Ragheb, Amr M., Fathallah, Habib A., Altamimi, Majid, Alshebeili, Saleh A.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:5G wireless networks promise to provide massive bandwidth for various types of connections. In such networks, the backhaul/fronthaul sections should be easy to deploy and support the required high bandwidth. To improve the free space optic (FSO) link bandwidth so that it can replace fiber cables and support 5G networks, all-optical FSO systems were proposed which exploit advanced modulation formats in the transmitter side and coherent detection in the receiver side. However, such links will suffer much under harsh outdoor environment, especially under fog and dust conditions than traditional FSO links that have limited bandwidth. Effect of fog on such links has been investigated in the literature. However, the dust effect is not covered. In this paper, we first experimentally analyzed the effects of dust storms on the performance of an all-optical FSO link carrying a 1-Gbaud/16-quadrature amplitude modulation 5G signal. The results demonstrate that the all-optical FSO link is significantly affected by low visibility range, with severe bit-error-rate (BER), and error vector magnitude (EVM) limits appearing at a 50-m visibility range for a 2.7-m channel length. For a visibility range greater than 200-m, the BER and EVM were improved to 10 −9 and 5.5% of the root mean square, respectively. Furthermore, the analysis showed that the dust storm condition introduces flat fading over the frequency range under study, i.e., 21-29 GHz. Second, a comparison between FSO and radio frequency (RF) channels under the same dusty conditions were performed. The results showed that the effects of the dust storm are negligible for the RF link which makes it suitable as a backup for FSO link under severe dust conditions. Finally, a hybrid cascaded FSO/RF link was installed and analyzed in terms of visibility range, BER, and EVM.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2900000