Assessing spatial predictive models in the environmental sciences: Accuracy measures, data variation and variance explained

A comprehensive assessment of the performance of predictive models is necessary as they have been increasingly employed to generate spatial predictions for environmental management and conservation and their accuracy is crucial to evidence-informed decision making and policy. In this study, we clari...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental modelling & software : with environment data news Vol. 80; pp. 1 - 8
Main Author Li, Jin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A comprehensive assessment of the performance of predictive models is necessary as they have been increasingly employed to generate spatial predictions for environmental management and conservation and their accuracy is crucial to evidence-informed decision making and policy. In this study, we clarified relevant issues associated with variance explained (VEcv) by predictive models, established the relationships between VEcv and commonly used accuracy measures and unified these measures under VEcv that is independent of unit/scale and data variation. We quantified the relationships between these measures and data variation and found about 65% compared models and over 45% recommended models for generating spatial predictions explained no more than 50% data variance. We classified the predictive models based on VEcv, which provides a tool to directly compare the accuracy of predictive models for data with different unit/scale and variation and establishes a cross-disciplinary context and benchmark for assessing predictive models in future studies. •Established the relationships of VECV with commonly used accuracy measures.•Quantified the relationships of these measures with data variation.•Objectively assessed predictive models based on VECV in the environmental sciences.•Provided a tool to assess predictive models for data of various unit and variation.•Established a cross-disciplinary context/benchmark for assessing predictive models.
AbstractList A comprehensive assessment of the performance of predictive models is necessary as they have been increasingly employed to generate spatial predictions for environmental management and conservation and their accuracy is crucial to evidence-informed decision making and policy. In this study, we clarified relevant issues associated with variance explained (VEcv) by predictive models, established the relationships between VEcv and commonly used accuracy measures and unified these measures under VEcv that is independent of unit/scale and data variation. We quantified the relationships between these measures and data variation and found about 65% compared models and over 45% recommended models for generating spatial predictions explained no more than 50% data variance. We classified the predictive models based on VEcv, which provides a tool to directly compare the accuracy of predictive models for data with different unit/scale and variation and establishes a cross-disciplinary context and benchmark for assessing predictive models in future studies. •Established the relationships of VECV with commonly used accuracy measures.•Quantified the relationships of these measures with data variation.•Objectively assessed predictive models based on VECV in the environmental sciences.•Provided a tool to assess predictive models for data of various unit and variation.•Established a cross-disciplinary context/benchmark for assessing predictive models.
A comprehensive assessment of the performance of predictive models is necessary as they have been increasingly employed to generate spatial predictions for environmental management and conservation and their accuracy is crucial to evidence-informed decision making and policy. In this study, we clarified relevant issues associated with variance explained (VEcv) by predictive models, established the relationships between VEcv and commonly used accuracy measures and unified these measures under VEcv that is independent of unit/scale and data variation. We quantified the relationships between these measures and data variation and found about 65% compared models and over 45% recommended models for generating spatial predictions explained no more than 50% data variance. We classified the predictive models based on VEcv, which provides a tool to directly compare the accuracy of predictive models for data with different unit/scale and variation and establishes a cross-disciplinary context and benchmark for assessing predictive models in future studies.
Author Li, Jin
Author_xml – sequence: 1
  givenname: Jin
  surname: Li
  fullname: Li, Jin
  email: Jin.Li@ga.gov.au
  organization: Geoscience Australia, GPO Box 378, Canberra, ACT 2601 Australia
BookMark eNqFkUFPHCEYhjloUrX9CSYcPbgjDAwzowezMdo2MemlPRNkPpTNDIx87MZN_3xZd0-97Am-8LxvvvCck5MQAxByyVnFGVc3qwrCBqPLVV3GitUVY_KEnHGh5KLjTf2FnCOuGGPlLs_I3yUiIPrwSnE22ZuRzgkGb7PfAJ3iACNSH2h-A1qafYphgpALhtZDsIC3dGntOhm7pRMYXCfAazqYbOjGJF8qY6AmDPupBCh8zKPxAYav5NSZEeHb4bwgf54efz_8WDz_-v7zYfm8sLKVeWEMmME1qnHOdcp2tWJ933fCCs6EAKZebFverVVS1LV0fdO98Fa4tgDQQC8uyNW-d07xfQ2Y9eTRwjiaAHGNuuZcdT1XrTyK8o4rpnqhxHG07dpeCSl3CzR71KaImMDpOfnJpK3mTO-06ZU-aNM7bZrVumgrubv_ctbnzx_NyfjxaPp-ny4KYeMh6YOywSewWQ_RH2n4B9_YvbQ
CitedBy_id crossref_primary_10_1007_s00338_025_02623_y
crossref_primary_10_1109_TNSRE_2021_3094324
crossref_primary_10_1093_jas_skad199
crossref_primary_10_1007_s10652_018_9574_z
crossref_primary_10_1142_S0219622019500469
crossref_primary_10_3390_rs14133162
crossref_primary_10_1016_j_engstruct_2020_111109
crossref_primary_10_1016_j_apenergy_2024_123156
crossref_primary_10_1007_s00382_021_05764_2
crossref_primary_10_3390_bdcc2020009
crossref_primary_10_5194_gmd_13_4253_2020
crossref_primary_10_3389_fphys_2023_1181745
crossref_primary_10_3390_agronomy10121854
crossref_primary_10_1371_journal_pone_0183250
crossref_primary_10_1016_j_istruc_2022_04_007
crossref_primary_10_1016_j_mex_2024_102916
crossref_primary_10_1098_rsta_2020_0182
crossref_primary_10_1016_j_envsoft_2017_07_016
crossref_primary_10_1080_07038992_2021_1999797
crossref_primary_10_1029_2021GL096820
crossref_primary_10_1152_japplphysiol_00556_2017
crossref_primary_10_3390_w14233866
crossref_primary_10_1016_j_engstruct_2021_112752
crossref_primary_10_5194_gmd_10_709_2017
crossref_primary_10_1016_j_cageo_2021_104907
crossref_primary_10_1016_j_ecoenv_2019_109387
crossref_primary_10_1016_j_marpolbul_2019_110779
crossref_primary_10_1016_j_ijimpeng_2021_104145
crossref_primary_10_1016_j_scitotenv_2024_176033
crossref_primary_10_1016_j_ecolmodel_2021_109501
crossref_primary_10_1016_j_jag_2024_104036
crossref_primary_10_3390_geosciences9040180
crossref_primary_10_1007_s41742_019_00208_6
crossref_primary_10_1016_j_ocecoaman_2023_106543
crossref_primary_10_1007_s11368_019_02537_7
crossref_primary_10_3390_w16172500
crossref_primary_10_1016_j_ecolind_2023_110698
crossref_primary_10_1016_j_oceano_2017_09_003
crossref_primary_10_1016_j_enggeo_2023_107300
crossref_primary_10_3390_app9102048
crossref_primary_10_1371_journal_pone_0216129
crossref_primary_10_1134_S1064229322600816
crossref_primary_10_1080_10106049_2021_1939440
crossref_primary_10_1039_D3SC05534E
crossref_primary_10_1111_mec_16458
crossref_primary_10_1021_acs_energyfuels_1c00957
crossref_primary_10_1016_j_scitotenv_2020_139362
crossref_primary_10_1016_j_jclepro_2023_139739
crossref_primary_10_1109_TNSRE_2022_3162421
Cites_doi 10.1016/j.atmosenv.2008.10.005
10.1016/j.envsoft.2015.08.012
10.1016/j.ecolmodel.2008.10.019
10.1016/j.envsoft.2011.07.004
10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
10.1111/j.2007.0906-7590.05171.x
10.1016/j.envsoft.2013.12.008
10.5194/adgeo-5-89-2005
10.1080/13658810500286976
10.2111/REM-D-09-00074.1
10.1016/0022-1694(70)90255-6
10.1016/j.csr.2011.05.015
10.5194/gmd-7-1247-2014
10.2136/sssaj2001.652470x
10.1111/j.1600-0587.2010.06354.x
10.1007/s11269-005-3179-2
10.3354/cr024161
10.1016/S0016-7061(00)00042-2
10.1016/j.geoderma.2003.08.018
10.1016/j.jhydrol.2009.08.003
10.3354/cr030079
10.2136/sssaj1996.03615995006000040040x
10.1016/j.envsoft.2014.09.013
10.1016/j.envsoft.2012.09.011
10.1016/j.ecoinf.2010.12.003
10.1007/BF02139623
10.1002/joc.2419
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.envsoft.2016.02.004
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Computer Science
Environmental Sciences
EndPage 8
ExternalDocumentID 10_1016_j_envsoft_2016_02_004
S136481521630024X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSV
SSZ
T5K
UHS
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c474t-aaeadf565fff86c826099983c31033e06bc7df5cc643224f958b173f7c31e5e93
IEDL.DBID .~1
ISSN 1364-8152
IngestDate Fri Jul 11 02:02:44 EDT 2025
Fri Jul 11 12:06:24 EDT 2025
Thu Jul 10 23:50:58 EDT 2025
Thu Apr 24 23:13:19 EDT 2025
Tue Jul 01 01:20:16 EDT 2025
Thu Nov 14 02:16:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data variance
Model assessment
Spatial predictions
Predictive accuracy
Error measure
Spatial interpolation methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-aaeadf565fff86c826099983c31033e06bc7df5cc643224f958b173f7c31e5e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1787963449
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_2116891674
proquest_miscellaneous_1816069363
proquest_miscellaneous_1787963449
crossref_primary_10_1016_j_envsoft_2016_02_004
crossref_citationtrail_10_1016_j_envsoft_2016_02_004
elsevier_sciencedirect_doi_10_1016_j_envsoft_2016_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2016
2016-06-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationTitle Environmental modelling & software : with environment data news
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gotway, Ferguson, Hergert, Peterson (bib8) 1996; 60
Hengl, Heuvelink, Stein (bib13) 2004; 120
Vicente-Serrano, Saz-Sánchez, Cuadrat (bib32) 2003; 24
Krause, Boyle, Bäse (bib15) 2005; 5
Willmott (bib33) 1982; 63
Dormann, McPherson, Araujo, Bivand, Bolliger, Carl, Davies, Hirzel, Jets, Daniel Kissling, Kuhn, Ohlemuller, Peres-Neto, Reineking, Schroder, Schurr, Wilson (bib5) 2007; 30
Kuhn, Johnson (bib16) 2013
Bourennane, King, Couturier (bib2) 2000; 97
Han, Kamber (bib11) 2006
Li, Heap, Potter, Daniell (bib20) 2011; 26
Willmott, Robeson, Matsuura (bib37) 2012; 32
Li, Heap, Potter, Huang, Daniell (bib21) 2011; 31
Schloeder, Zimmerman, Jacobs (bib30) 2001; 65
Li, Heap (bib17) 2008
Mardikis, Kalivas, Kollias (bib25) 2005; 19
Crawley (bib4) 2007
Nash, Sutcliffe (bib28) 1970; 10
Maier, Kapelan, Kasprzyk, Kollat, Matott, Cunha, Dandy, Gibbs, Keedwell, Marchi, Ostfeld, Savic, Solomatine, Vrugt, Zecchin, Minsker, Barbour, Kuczera, Pasha, Castelletti, Giuliani, Reed (bib24) 2014; 62
Gupta, Kling, Yilmaz, Martinez (bib10) 2009; 377
Draper, Smith (bib6) 1981
Willmott, Matsuura, Robeson (bib36) 2009; 43
Venables, Ripley (bib31) 2002
Hastie, Tibshirani, Friedman (bib12) 2009
Greenwood, Neeteson, Draycott (bib9) 1985; 85
Liu, White, Newell (bib23) 2011; 34
Willmott, Robeson, Matsuura, Ficklin (bib38) 2015; 73
Bennett, Croke, Guariso, Guillaume, Hamilton, Jakeman, Marsili-Libelli, Newham, Norton, Perrin, Pierce, Robson, Seppelt, Voinov, Fath, Andreassian (bib1) 2013; 40
Karl (bib14) 2010; 63
Willmott, Matsuura (bib34) 2005; 30
Li, Potter, Huang, Heap (bib22) 2012
Chai, Draxler (bib3) 2014; 7
Li, Heap (bib19) 2014; 53
Fielding (bib7) 2002
Li, Heap (bib18) 2011; 6
Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (bib27) 2007; 50
Marmion, Luoto, Heikkinen, Thuiller (bib26) 2009; 220
Willmott, Matsuura (bib35) 2006; 20
(bib29) 2012
Gupta (10.1016/j.envsoft.2016.02.004_bib10) 2009; 377
Kuhn (10.1016/j.envsoft.2016.02.004_bib16) 2013
Fielding (10.1016/j.envsoft.2016.02.004_bib7) 2002
Moriasi (10.1016/j.envsoft.2016.02.004_bib27) 2007; 50
Schloeder (10.1016/j.envsoft.2016.02.004_bib30) 2001; 65
Hastie (10.1016/j.envsoft.2016.02.004_bib12) 2009
Dormann (10.1016/j.envsoft.2016.02.004_bib5) 2007; 30
Li (10.1016/j.envsoft.2016.02.004_bib22) 2012
Willmott (10.1016/j.envsoft.2016.02.004_bib37) 2012; 32
Greenwood (10.1016/j.envsoft.2016.02.004_bib9) 1985; 85
Willmott (10.1016/j.envsoft.2016.02.004_bib35) 2006; 20
Bourennane (10.1016/j.envsoft.2016.02.004_bib2) 2000; 97
Krause (10.1016/j.envsoft.2016.02.004_bib15) 2005; 5
Han (10.1016/j.envsoft.2016.02.004_bib11) 2006
Willmott (10.1016/j.envsoft.2016.02.004_bib33) 1982; 63
(10.1016/j.envsoft.2016.02.004_bib29) 2012
Willmott (10.1016/j.envsoft.2016.02.004_bib34) 2005; 30
Gotway (10.1016/j.envsoft.2016.02.004_bib8) 1996; 60
Bennett (10.1016/j.envsoft.2016.02.004_bib1) 2013; 40
Nash (10.1016/j.envsoft.2016.02.004_bib28) 1970; 10
Vicente-Serrano (10.1016/j.envsoft.2016.02.004_bib32) 2003; 24
Crawley (10.1016/j.envsoft.2016.02.004_bib4) 2007
Draper (10.1016/j.envsoft.2016.02.004_bib6) 1981
Li (10.1016/j.envsoft.2016.02.004_bib20) 2011; 26
Li (10.1016/j.envsoft.2016.02.004_bib21) 2011; 31
Marmion (10.1016/j.envsoft.2016.02.004_bib26) 2009; 220
Hengl (10.1016/j.envsoft.2016.02.004_bib13) 2004; 120
Li (10.1016/j.envsoft.2016.02.004_bib17) 2008
Karl (10.1016/j.envsoft.2016.02.004_bib14) 2010; 63
Chai (10.1016/j.envsoft.2016.02.004_bib3) 2014; 7
Mardikis (10.1016/j.envsoft.2016.02.004_bib25) 2005; 19
Li (10.1016/j.envsoft.2016.02.004_bib19) 2014; 53
Li (10.1016/j.envsoft.2016.02.004_bib18) 2011; 6
Liu (10.1016/j.envsoft.2016.02.004_bib23) 2011; 34
Maier (10.1016/j.envsoft.2016.02.004_bib24) 2014; 62
Venables (10.1016/j.envsoft.2016.02.004_bib31) 2002
Willmott (10.1016/j.envsoft.2016.02.004_bib36) 2009; 43
Willmott (10.1016/j.envsoft.2016.02.004_bib38) 2015; 73
References_xml – volume: 65
  start-page: 470
  year: 2001
  end-page: 479
  ident: bib30
  article-title: Comparison of methods for interpolating soil properties using limited data
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 115
  year: 2012
  ident: bib22
  article-title: Predicting Seabed Sand Content across the Australian Margin Using Machine Learning and Geostatistical Methods
– year: 2013
  ident: bib16
  article-title: Applied Predictive Modeling
– volume: 43
  start-page: 749
  year: 2009
  end-page: 752
  ident: bib36
  article-title: Ambiguities inherent in sums-of-squares-based error statistics
  publication-title: Atmos. Environ.
– year: 2002
  ident: bib31
  article-title: Modern Applied Statistics with S-Plus
– volume: 62
  start-page: 271
  year: 2014
  end-page: 299
  ident: bib24
  article-title: Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions
  publication-title: Environ. Model. Softw.
– volume: 73
  start-page: 167
  year: 2015
  end-page: 174
  ident: bib38
  article-title: Assessment of three dimensionless measures of model performance
  publication-title: Environ. Model. Softw.
– volume: 40
  start-page: 1
  year: 2013
  end-page: 20
  ident: bib1
  article-title: Characterising performance of environmental models
  publication-title: Environ. Model. Softw.
– year: 2006
  ident: bib11
  article-title: Data Mining: Concept and Techniques
– year: 2007
  ident: bib4
  article-title: The R Book
– year: 2009
  ident: bib12
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 31
  start-page: 1365
  year: 2011
  end-page: 1376
  ident: bib21
  article-title: Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin
  publication-title: Cont. Shelf Res.
– volume: 50
  start-page: 885
  year: 2007
  end-page: 900
  ident: bib27
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Am. Soc. Agric. Biol. Eng.
– volume: 5
  start-page: 89
  year: 2005
  end-page: 97
  ident: bib15
  article-title: Comparison of different efficiency criteria for hydrological model assessment
  publication-title: Adv. Geosci.
– start-page: 271
  year: 2002
  end-page: 280
  ident: bib7
  article-title: What are the appropriate characteristics of an accuracy measure?
  publication-title: Predicting Species Occurrences: Issues of Accuracy and Scale
– volume: 63
  start-page: 335
  year: 2010
  end-page: 349
  ident: bib14
  article-title: Spatial predictions of cover attributes of rangeland ecosystems using regression kriging and remote sensing
  publication-title: Rangel. Ecol. Manag.
– start-page: 137
  year: 2008
  ident: bib17
  article-title: A Review of Spatial Interpolation Methods for Environmental Scientists
– volume: 97
  start-page: 255
  year: 2000
  end-page: 271
  ident: bib2
  article-title: Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities
  publication-title: Geoderma
– volume: 60
  start-page: 1237
  year: 1996
  end-page: 1247
  ident: bib8
  article-title: Comparison of kriging and inverse-distance methods for mapping parameters
  publication-title: Soil Sci. Soc. Am. J.
– volume: 30
  start-page: 609
  year: 2007
  end-page: 628
  ident: bib5
  article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
  publication-title: Ecography
– volume: 32
  start-page: 2088
  year: 2012
  end-page: 2094
  ident: bib37
  article-title: A refined index of model performance
  publication-title: Int. J. Climatol.
– volume: 30
  start-page: 79
  year: 2005
  end-page: 82
  ident: bib34
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
– volume: 377
  start-page: 80
  year: 2009
  end-page: 91
  ident: bib10
  article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling
  publication-title: J. Hydrol.
– volume: 26
  start-page: 1647
  year: 2011
  end-page: 1659
  ident: bib20
  article-title: Application of machine learning methods to spatial interpolation of environmental variables
  publication-title: Environ. Model. Softw.
– volume: 220
  start-page: 3512
  year: 2009
  end-page: 3520
  ident: bib26
  article-title: The performance of state-of-the-art modelling techniques depends on geographical distribution of species
  publication-title: Ecol. Model.
– year: 1981
  ident: bib6
  article-title: Applied Regression Analysis
– volume: 20
  start-page: 89
  year: 2006
  end-page: 102
  ident: bib35
  article-title: On the use of dimensioned measures of error to evaluate the performance of spatial interpolators
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 85
  start-page: 185
  year: 1985
  end-page: 203
  ident: bib9
  article-title: Response of potatoes to N fertilizer: dynamic model
  publication-title: Plant Soil
– volume: 34
  start-page: 232
  year: 2011
  end-page: 243
  ident: bib23
  article-title: Measuring and comparing the accuracy of species distribution models with presence-absence data
  publication-title: Ecography
– volume: 19
  start-page: 251
  year: 2005
  end-page: 278
  ident: bib25
  article-title: Comparison of interpolation methods for the prediction of reference evapotranspiration – an application in Greece
  publication-title: Water Resour. Manag.
– year: 2012
  ident: bib29
  article-title: R: a Language and Environment for Statistical Computing
– volume: 120
  start-page: 75
  year: 2004
  end-page: 93
  ident: bib13
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
– volume: 6
  start-page: 228
  year: 2011
  end-page: 241
  ident: bib18
  article-title: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors
  publication-title: Ecol. Inf.
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  ident: bib3
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: bib28
  article-title: River flow forecasting through conceptual models part I – A discussion of principles
  publication-title: J. Hydrol.
– volume: 63
  start-page: 1309
  year: 1982
  end-page: 1313
  ident: bib33
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull. Am. Meteorological Soc.
– volume: 53
  start-page: 173
  year: 2014
  end-page: 189
  ident: bib19
  article-title: Spatial interpolation methods applied in the environmental sciences: a review
  publication-title: Environ. Model. Softw.
– volume: 24
  start-page: 161
  year: 2003
  end-page: 180
  ident: bib32
  article-title: Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature
  publication-title: Clim. Res.
– start-page: 115
  year: 2012
  ident: 10.1016/j.envsoft.2016.02.004_bib22
– volume: 43
  start-page: 749
  year: 2009
  ident: 10.1016/j.envsoft.2016.02.004_bib36
  article-title: Ambiguities inherent in sums-of-squares-based error statistics
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.10.005
– volume: 73
  start-page: 167
  year: 2015
  ident: 10.1016/j.envsoft.2016.02.004_bib38
  article-title: Assessment of three dimensionless measures of model performance
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.08.012
– volume: 220
  start-page: 3512
  issue: 24
  year: 2009
  ident: 10.1016/j.envsoft.2016.02.004_bib26
  article-title: The performance of state-of-the-art modelling techniques depends on geographical distribution of species
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2008.10.019
– volume: 26
  start-page: 1647
  year: 2011
  ident: 10.1016/j.envsoft.2016.02.004_bib20
  article-title: Application of machine learning methods to spatial interpolation of environmental variables
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2011.07.004
– year: 2009
  ident: 10.1016/j.envsoft.2016.02.004_bib12
– volume: 63
  start-page: 1309
  issue: 11
  year: 1982
  ident: 10.1016/j.envsoft.2016.02.004_bib33
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull. Am. Meteorological Soc.
  doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
– year: 2006
  ident: 10.1016/j.envsoft.2016.02.004_bib11
– volume: 30
  start-page: 609
  year: 2007
  ident: 10.1016/j.envsoft.2016.02.004_bib5
  article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
  publication-title: Ecography
  doi: 10.1111/j.2007.0906-7590.05171.x
– start-page: 137
  year: 2008
  ident: 10.1016/j.envsoft.2016.02.004_bib17
– volume: 53
  start-page: 173
  year: 2014
  ident: 10.1016/j.envsoft.2016.02.004_bib19
  article-title: Spatial interpolation methods applied in the environmental sciences: a review
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2013.12.008
– volume: 5
  start-page: 89
  year: 2005
  ident: 10.1016/j.envsoft.2016.02.004_bib15
  article-title: Comparison of different efficiency criteria for hydrological model assessment
  publication-title: Adv. Geosci.
  doi: 10.5194/adgeo-5-89-2005
– year: 2002
  ident: 10.1016/j.envsoft.2016.02.004_bib31
– volume: 20
  start-page: 89
  issue: 1
  year: 2006
  ident: 10.1016/j.envsoft.2016.02.004_bib35
  article-title: On the use of dimensioned measures of error to evaluate the performance of spatial interpolators
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810500286976
– volume: 63
  start-page: 335
  year: 2010
  ident: 10.1016/j.envsoft.2016.02.004_bib14
  article-title: Spatial predictions of cover attributes of rangeland ecosystems using regression kriging and remote sensing
  publication-title: Rangel. Ecol. Manag.
  doi: 10.2111/REM-D-09-00074.1
– year: 2007
  ident: 10.1016/j.envsoft.2016.02.004_bib4
– volume: 10
  start-page: 282
  year: 1970
  ident: 10.1016/j.envsoft.2016.02.004_bib28
  article-title: River flow forecasting through conceptual models part I – A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 50
  start-page: 885
  issue: 3
  year: 2007
  ident: 10.1016/j.envsoft.2016.02.004_bib27
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Am. Soc. Agric. Biol. Eng.
– volume: 31
  start-page: 1365
  year: 2011
  ident: 10.1016/j.envsoft.2016.02.004_bib21
  article-title: Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2011.05.015
– volume: 7
  start-page: 1247
  year: 2014
  ident: 10.1016/j.envsoft.2016.02.004_bib3
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– volume: 65
  start-page: 470
  year: 2001
  ident: 10.1016/j.envsoft.2016.02.004_bib30
  article-title: Comparison of methods for interpolating soil properties using limited data
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652470x
– volume: 34
  start-page: 232
  year: 2011
  ident: 10.1016/j.envsoft.2016.02.004_bib23
  article-title: Measuring and comparing the accuracy of species distribution models with presence-absence data
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2010.06354.x
– volume: 19
  start-page: 251
  year: 2005
  ident: 10.1016/j.envsoft.2016.02.004_bib25
  article-title: Comparison of interpolation methods for the prediction of reference evapotranspiration – an application in Greece
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-005-3179-2
– volume: 24
  start-page: 161
  year: 2003
  ident: 10.1016/j.envsoft.2016.02.004_bib32
  article-title: Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature
  publication-title: Clim. Res.
  doi: 10.3354/cr024161
– volume: 97
  start-page: 255
  year: 2000
  ident: 10.1016/j.envsoft.2016.02.004_bib2
  article-title: Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(00)00042-2
– volume: 120
  start-page: 75
  year: 2004
  ident: 10.1016/j.envsoft.2016.02.004_bib13
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.08.018
– volume: 377
  start-page: 80
  year: 2009
  ident: 10.1016/j.envsoft.2016.02.004_bib10
  article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.08.003
– year: 2012
  ident: 10.1016/j.envsoft.2016.02.004_bib29
– volume: 30
  start-page: 79
  year: 2005
  ident: 10.1016/j.envsoft.2016.02.004_bib34
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– start-page: 271
  year: 2002
  ident: 10.1016/j.envsoft.2016.02.004_bib7
  article-title: What are the appropriate characteristics of an accuracy measure?
– year: 2013
  ident: 10.1016/j.envsoft.2016.02.004_bib16
– volume: 60
  start-page: 1237
  year: 1996
  ident: 10.1016/j.envsoft.2016.02.004_bib8
  article-title: Comparison of kriging and inverse-distance methods for mapping parameters
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1996.03615995006000040040x
– volume: 62
  start-page: 271
  issue: 0
  year: 2014
  ident: 10.1016/j.envsoft.2016.02.004_bib24
  article-title: Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2014.09.013
– volume: 40
  start-page: 1
  year: 2013
  ident: 10.1016/j.envsoft.2016.02.004_bib1
  article-title: Characterising performance of environmental models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2012.09.011
– volume: 6
  start-page: 228
  year: 2011
  ident: 10.1016/j.envsoft.2016.02.004_bib18
  article-title: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2010.12.003
– volume: 85
  start-page: 185
  year: 1985
  ident: 10.1016/j.envsoft.2016.02.004_bib9
  article-title: Response of potatoes to N fertilizer: dynamic model
  publication-title: Plant Soil
  doi: 10.1007/BF02139623
– volume: 32
  start-page: 2088
  year: 2012
  ident: 10.1016/j.envsoft.2016.02.004_bib37
  article-title: A refined index of model performance
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.2419
– year: 1981
  ident: 10.1016/j.envsoft.2016.02.004_bib6
SSID ssj0001524
Score 2.3746378
SecondaryResourceType review_article
Snippet A comprehensive assessment of the performance of predictive models is necessary as they have been increasingly employed to generate spatial predictions for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Assessments
Benchmarking
Computer programs
computer software
Data variance
decision making
Environment management
environmental management
environmental models
Error measure
issues and policy
Mathematical models
Model assessment
prediction
Predictive accuracy
Scale (ratio)
Spatial interpolation methods
Spatial predictions
Variance
Title Assessing spatial predictive models in the environmental sciences: Accuracy measures, data variation and variance explained
URI https://dx.doi.org/10.1016/j.envsoft.2016.02.004
https://www.proquest.com/docview/1787963449
https://www.proquest.com/docview/1816069363
https://www.proquest.com/docview/2116891674
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hEBJ7GKwMjQ2QJ_G4tPlwHIe3qirqhsYLQ-qblTiOVAShalq0Com_fXexQwEJkPbo-GxZvvPP59wXwHEYlgXesqknUTv2yFDk5UZIT-eFn0pdZLIxxfw-F6NL_mscj9dg0MbCkFulw36L6Q1auy89t5u96WTSuwgiQZlGwoCyRoV8TBHsPCEp7z6s3DyQwBa2Fdwj6lUUT--qa6q7GtGOPLyETd3JX7ufXiB1c_2c7sBHpzeyvl3aJ1gzVQe225oMzB3RDmwOmzTUyw58eJJqsAN7w1VEG87j6OtduLdmXyRiNXlXY-d0RtYbwkHWFMqp2aRiqCgy82wOt131CetrvZhleslu7B_H-gcjz1N2hw_xhvMsqwrbwgHM_J1eZ7i04jNcng7_DEaeq8jgaZ7wuZdlKHgl6oBlWUqh8WlCCqaMNFUri4wvcp1gv9ao56BuUKaxzIMkKhMkMLFJoz1Yr24r8wVYoKWveV4IQyBSRlLgSzPzeRIHRayN3gfe8kFpl66cqmZcq9Yv7Uo59ilin_JDhTPtQ_dx2NTm63hvgGyZrJ4JnsI75b2h31uhUHgoydKSVeZ2UasAYRCRjfP0DRoZ4PFIIxG9ToOvcyFTChT5-v_L_AZb1LL-bQewPp8tzCFqUvP8qDkqR7DR_3k2Ov8HdQ8hEQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xomnjgW0FND4GnrRHQvPhuA5vFSoqX30ZSH2zEseRWkGomhaB9s_vLnb4mMSQeEx8Z1k5-3d3ufMdwK8wLHLUsokn0Tr2KFDkZUZIT2e5n0idp7IOxVwMxeCKn47i0RIcNXdhKK3SYb_F9Bqt3ZuO-5qd6Xjc-R1EgiqNhAFVjQr56AMsU3WquAXLvZOzwfARkJHG9rYV3COGp4s8ncmBKe8qBDxK8hK2eid_TUX9A9a1Bjr-CqvOdGQ9u7pvsGTKNnxp2jIwd0rb8LFfV6J-aMPKs2qDbdjoP11qw3kcfbUGf2zkF4lYRQnWODidUQCHoJDVvXIqNi4Z2orMvJjDfbHqkPW0XsxS_cBu7E_Hap9R8im7Q1-8Fj5Ly9w-IQMz99PrFJeWr8PVcf_yaOC5pgye5l0-99IU916BZmBRFFJo9E7IxpSRpoZlkfFFprs4rjWaOmgeFEkss6AbFV0kMLFJog1olbel-Q4s0NLXPMuFIRwpIinQ2Ux9FGGQx9roTeCNHJR2Fcupcca1alLTJsqJT5H4lB8qnGkTDh7ZprZkx1sMshGyerH3FKqVt1h_NptC4bmkYEtamttFpQJEQgQ3zpP_0MgAT0gSieh1GnTQhUzorsjW-5e5B58Glxfn6vxkeLYNn2nEprvtQGs-W5gfaFjNs113cP4CPxIjwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+spatial+predictive+models+in+the+environmental+sciences%3A+Accuracy+measures%2C+data+variation+and+variance+explained&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Li%2C+Jin&rft.date=2016-06-01&rft.issn=1364-8152&rft.volume=80&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.envsoft.2016.02.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon