Assessing spatial predictive models in the environmental sciences: Accuracy measures, data variation and variance explained
A comprehensive assessment of the performance of predictive models is necessary as they have been increasingly employed to generate spatial predictions for environmental management and conservation and their accuracy is crucial to evidence-informed decision making and policy. In this study, we clari...
Saved in:
Published in | Environmental modelling & software : with environment data news Vol. 80; pp. 1 - 8 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A comprehensive assessment of the performance of predictive models is necessary as they have been increasingly employed to generate spatial predictions for environmental management and conservation and their accuracy is crucial to evidence-informed decision making and policy. In this study, we clarified relevant issues associated with variance explained (VEcv) by predictive models, established the relationships between VEcv and commonly used accuracy measures and unified these measures under VEcv that is independent of unit/scale and data variation. We quantified the relationships between these measures and data variation and found about 65% compared models and over 45% recommended models for generating spatial predictions explained no more than 50% data variance. We classified the predictive models based on VEcv, which provides a tool to directly compare the accuracy of predictive models for data with different unit/scale and variation and establishes a cross-disciplinary context and benchmark for assessing predictive models in future studies.
•Established the relationships of VECV with commonly used accuracy measures.•Quantified the relationships of these measures with data variation.•Objectively assessed predictive models based on VECV in the environmental sciences.•Provided a tool to assess predictive models for data of various unit and variation.•Established a cross-disciplinary context/benchmark for assessing predictive models. |
---|---|
AbstractList | A comprehensive assessment of the performance of predictive models is necessary as they have been increasingly employed to generate spatial predictions for environmental management and conservation and their accuracy is crucial to evidence-informed decision making and policy. In this study, we clarified relevant issues associated with variance explained (VEcv) by predictive models, established the relationships between VEcv and commonly used accuracy measures and unified these measures under VEcv that is independent of unit/scale and data variation. We quantified the relationships between these measures and data variation and found about 65% compared models and over 45% recommended models for generating spatial predictions explained no more than 50% data variance. We classified the predictive models based on VEcv, which provides a tool to directly compare the accuracy of predictive models for data with different unit/scale and variation and establishes a cross-disciplinary context and benchmark for assessing predictive models in future studies.
•Established the relationships of VECV with commonly used accuracy measures.•Quantified the relationships of these measures with data variation.•Objectively assessed predictive models based on VECV in the environmental sciences.•Provided a tool to assess predictive models for data of various unit and variation.•Established a cross-disciplinary context/benchmark for assessing predictive models. A comprehensive assessment of the performance of predictive models is necessary as they have been increasingly employed to generate spatial predictions for environmental management and conservation and their accuracy is crucial to evidence-informed decision making and policy. In this study, we clarified relevant issues associated with variance explained (VEcv) by predictive models, established the relationships between VEcv and commonly used accuracy measures and unified these measures under VEcv that is independent of unit/scale and data variation. We quantified the relationships between these measures and data variation and found about 65% compared models and over 45% recommended models for generating spatial predictions explained no more than 50% data variance. We classified the predictive models based on VEcv, which provides a tool to directly compare the accuracy of predictive models for data with different unit/scale and variation and establishes a cross-disciplinary context and benchmark for assessing predictive models in future studies. |
Author | Li, Jin |
Author_xml | – sequence: 1 givenname: Jin surname: Li fullname: Li, Jin email: Jin.Li@ga.gov.au organization: Geoscience Australia, GPO Box 378, Canberra, ACT 2601 Australia |
BookMark | eNqFkUFPHCEYhjloUrX9CSYcPbgjDAwzowezMdo2MemlPRNkPpTNDIx87MZN_3xZd0-97Am-8LxvvvCck5MQAxByyVnFGVc3qwrCBqPLVV3GitUVY_KEnHGh5KLjTf2FnCOuGGPlLs_I3yUiIPrwSnE22ZuRzgkGb7PfAJ3iACNSH2h-A1qafYphgpALhtZDsIC3dGntOhm7pRMYXCfAazqYbOjGJF8qY6AmDPupBCh8zKPxAYav5NSZEeHb4bwgf54efz_8WDz_-v7zYfm8sLKVeWEMmME1qnHOdcp2tWJ933fCCs6EAKZebFverVVS1LV0fdO98Fa4tgDQQC8uyNW-d07xfQ2Y9eTRwjiaAHGNuuZcdT1XrTyK8o4rpnqhxHG07dpeCSl3CzR71KaImMDpOfnJpK3mTO-06ZU-aNM7bZrVumgrubv_ctbnzx_NyfjxaPp-ny4KYeMh6YOywSewWQ_RH2n4B9_YvbQ |
CitedBy_id | crossref_primary_10_1007_s00338_025_02623_y crossref_primary_10_1109_TNSRE_2021_3094324 crossref_primary_10_1093_jas_skad199 crossref_primary_10_1007_s10652_018_9574_z crossref_primary_10_1142_S0219622019500469 crossref_primary_10_3390_rs14133162 crossref_primary_10_1016_j_engstruct_2020_111109 crossref_primary_10_1016_j_apenergy_2024_123156 crossref_primary_10_1007_s00382_021_05764_2 crossref_primary_10_3390_bdcc2020009 crossref_primary_10_5194_gmd_13_4253_2020 crossref_primary_10_3389_fphys_2023_1181745 crossref_primary_10_3390_agronomy10121854 crossref_primary_10_1371_journal_pone_0183250 crossref_primary_10_1016_j_istruc_2022_04_007 crossref_primary_10_1016_j_mex_2024_102916 crossref_primary_10_1098_rsta_2020_0182 crossref_primary_10_1016_j_envsoft_2017_07_016 crossref_primary_10_1080_07038992_2021_1999797 crossref_primary_10_1029_2021GL096820 crossref_primary_10_1152_japplphysiol_00556_2017 crossref_primary_10_3390_w14233866 crossref_primary_10_1016_j_engstruct_2021_112752 crossref_primary_10_5194_gmd_10_709_2017 crossref_primary_10_1016_j_cageo_2021_104907 crossref_primary_10_1016_j_ecoenv_2019_109387 crossref_primary_10_1016_j_marpolbul_2019_110779 crossref_primary_10_1016_j_ijimpeng_2021_104145 crossref_primary_10_1016_j_scitotenv_2024_176033 crossref_primary_10_1016_j_ecolmodel_2021_109501 crossref_primary_10_1016_j_jag_2024_104036 crossref_primary_10_3390_geosciences9040180 crossref_primary_10_1007_s41742_019_00208_6 crossref_primary_10_1016_j_ocecoaman_2023_106543 crossref_primary_10_1007_s11368_019_02537_7 crossref_primary_10_3390_w16172500 crossref_primary_10_1016_j_ecolind_2023_110698 crossref_primary_10_1016_j_oceano_2017_09_003 crossref_primary_10_1016_j_enggeo_2023_107300 crossref_primary_10_3390_app9102048 crossref_primary_10_1371_journal_pone_0216129 crossref_primary_10_1134_S1064229322600816 crossref_primary_10_1080_10106049_2021_1939440 crossref_primary_10_1039_D3SC05534E crossref_primary_10_1111_mec_16458 crossref_primary_10_1021_acs_energyfuels_1c00957 crossref_primary_10_1016_j_scitotenv_2020_139362 crossref_primary_10_1016_j_jclepro_2023_139739 crossref_primary_10_1109_TNSRE_2022_3162421 |
Cites_doi | 10.1016/j.atmosenv.2008.10.005 10.1016/j.envsoft.2015.08.012 10.1016/j.ecolmodel.2008.10.019 10.1016/j.envsoft.2011.07.004 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 10.1111/j.2007.0906-7590.05171.x 10.1016/j.envsoft.2013.12.008 10.5194/adgeo-5-89-2005 10.1080/13658810500286976 10.2111/REM-D-09-00074.1 10.1016/0022-1694(70)90255-6 10.1016/j.csr.2011.05.015 10.5194/gmd-7-1247-2014 10.2136/sssaj2001.652470x 10.1111/j.1600-0587.2010.06354.x 10.1007/s11269-005-3179-2 10.3354/cr024161 10.1016/S0016-7061(00)00042-2 10.1016/j.geoderma.2003.08.018 10.1016/j.jhydrol.2009.08.003 10.3354/cr030079 10.2136/sssaj1996.03615995006000040040x 10.1016/j.envsoft.2014.09.013 10.1016/j.envsoft.2012.09.011 10.1016/j.ecoinf.2010.12.003 10.1007/BF02139623 10.1002/joc.2419 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
DOI | 10.1016/j.envsoft.2016.02.004 |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Computer Science Environmental Sciences |
EndPage | 8 |
ExternalDocumentID | 10_1016_j_envsoft_2016_02_004 S136481521630024X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN AAYOK ABBOA ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSJ SSV SSZ T5K UHS ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7QH 7ST 7UA C1K F1W H97 L.G SOI 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c474t-aaeadf565fff86c826099983c31033e06bc7df5cc643224f958b173f7c31e5e93 |
IEDL.DBID | .~1 |
ISSN | 1364-8152 |
IngestDate | Fri Jul 11 02:02:44 EDT 2025 Fri Jul 11 12:06:24 EDT 2025 Thu Jul 10 23:50:58 EDT 2025 Thu Apr 24 23:13:19 EDT 2025 Tue Jul 01 01:20:16 EDT 2025 Thu Nov 14 02:16:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data variance Model assessment Spatial predictions Predictive accuracy Error measure Spatial interpolation methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-aaeadf565fff86c826099983c31033e06bc7df5cc643224f958b173f7c31e5e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1787963449 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2116891674 proquest_miscellaneous_1816069363 proquest_miscellaneous_1787963449 crossref_primary_10_1016_j_envsoft_2016_02_004 crossref_citationtrail_10_1016_j_envsoft_2016_02_004 elsevier_sciencedirect_doi_10_1016_j_envsoft_2016_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2016 2016-06-00 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
PublicationDecade | 2010 |
PublicationTitle | Environmental modelling & software : with environment data news |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gotway, Ferguson, Hergert, Peterson (bib8) 1996; 60 Hengl, Heuvelink, Stein (bib13) 2004; 120 Vicente-Serrano, Saz-Sánchez, Cuadrat (bib32) 2003; 24 Krause, Boyle, Bäse (bib15) 2005; 5 Willmott (bib33) 1982; 63 Dormann, McPherson, Araujo, Bivand, Bolliger, Carl, Davies, Hirzel, Jets, Daniel Kissling, Kuhn, Ohlemuller, Peres-Neto, Reineking, Schroder, Schurr, Wilson (bib5) 2007; 30 Kuhn, Johnson (bib16) 2013 Bourennane, King, Couturier (bib2) 2000; 97 Han, Kamber (bib11) 2006 Li, Heap, Potter, Daniell (bib20) 2011; 26 Willmott, Robeson, Matsuura (bib37) 2012; 32 Li, Heap, Potter, Huang, Daniell (bib21) 2011; 31 Schloeder, Zimmerman, Jacobs (bib30) 2001; 65 Li, Heap (bib17) 2008 Mardikis, Kalivas, Kollias (bib25) 2005; 19 Crawley (bib4) 2007 Nash, Sutcliffe (bib28) 1970; 10 Maier, Kapelan, Kasprzyk, Kollat, Matott, Cunha, Dandy, Gibbs, Keedwell, Marchi, Ostfeld, Savic, Solomatine, Vrugt, Zecchin, Minsker, Barbour, Kuczera, Pasha, Castelletti, Giuliani, Reed (bib24) 2014; 62 Gupta, Kling, Yilmaz, Martinez (bib10) 2009; 377 Draper, Smith (bib6) 1981 Willmott, Matsuura, Robeson (bib36) 2009; 43 Venables, Ripley (bib31) 2002 Hastie, Tibshirani, Friedman (bib12) 2009 Greenwood, Neeteson, Draycott (bib9) 1985; 85 Liu, White, Newell (bib23) 2011; 34 Willmott, Robeson, Matsuura, Ficklin (bib38) 2015; 73 Bennett, Croke, Guariso, Guillaume, Hamilton, Jakeman, Marsili-Libelli, Newham, Norton, Perrin, Pierce, Robson, Seppelt, Voinov, Fath, Andreassian (bib1) 2013; 40 Karl (bib14) 2010; 63 Willmott, Matsuura (bib34) 2005; 30 Li, Potter, Huang, Heap (bib22) 2012 Chai, Draxler (bib3) 2014; 7 Li, Heap (bib19) 2014; 53 Fielding (bib7) 2002 Li, Heap (bib18) 2011; 6 Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (bib27) 2007; 50 Marmion, Luoto, Heikkinen, Thuiller (bib26) 2009; 220 Willmott, Matsuura (bib35) 2006; 20 (bib29) 2012 Gupta (10.1016/j.envsoft.2016.02.004_bib10) 2009; 377 Kuhn (10.1016/j.envsoft.2016.02.004_bib16) 2013 Fielding (10.1016/j.envsoft.2016.02.004_bib7) 2002 Moriasi (10.1016/j.envsoft.2016.02.004_bib27) 2007; 50 Schloeder (10.1016/j.envsoft.2016.02.004_bib30) 2001; 65 Hastie (10.1016/j.envsoft.2016.02.004_bib12) 2009 Dormann (10.1016/j.envsoft.2016.02.004_bib5) 2007; 30 Li (10.1016/j.envsoft.2016.02.004_bib22) 2012 Willmott (10.1016/j.envsoft.2016.02.004_bib37) 2012; 32 Greenwood (10.1016/j.envsoft.2016.02.004_bib9) 1985; 85 Willmott (10.1016/j.envsoft.2016.02.004_bib35) 2006; 20 Bourennane (10.1016/j.envsoft.2016.02.004_bib2) 2000; 97 Krause (10.1016/j.envsoft.2016.02.004_bib15) 2005; 5 Han (10.1016/j.envsoft.2016.02.004_bib11) 2006 Willmott (10.1016/j.envsoft.2016.02.004_bib33) 1982; 63 (10.1016/j.envsoft.2016.02.004_bib29) 2012 Willmott (10.1016/j.envsoft.2016.02.004_bib34) 2005; 30 Gotway (10.1016/j.envsoft.2016.02.004_bib8) 1996; 60 Bennett (10.1016/j.envsoft.2016.02.004_bib1) 2013; 40 Nash (10.1016/j.envsoft.2016.02.004_bib28) 1970; 10 Vicente-Serrano (10.1016/j.envsoft.2016.02.004_bib32) 2003; 24 Crawley (10.1016/j.envsoft.2016.02.004_bib4) 2007 Draper (10.1016/j.envsoft.2016.02.004_bib6) 1981 Li (10.1016/j.envsoft.2016.02.004_bib20) 2011; 26 Li (10.1016/j.envsoft.2016.02.004_bib21) 2011; 31 Marmion (10.1016/j.envsoft.2016.02.004_bib26) 2009; 220 Hengl (10.1016/j.envsoft.2016.02.004_bib13) 2004; 120 Li (10.1016/j.envsoft.2016.02.004_bib17) 2008 Karl (10.1016/j.envsoft.2016.02.004_bib14) 2010; 63 Chai (10.1016/j.envsoft.2016.02.004_bib3) 2014; 7 Mardikis (10.1016/j.envsoft.2016.02.004_bib25) 2005; 19 Li (10.1016/j.envsoft.2016.02.004_bib19) 2014; 53 Li (10.1016/j.envsoft.2016.02.004_bib18) 2011; 6 Liu (10.1016/j.envsoft.2016.02.004_bib23) 2011; 34 Maier (10.1016/j.envsoft.2016.02.004_bib24) 2014; 62 Venables (10.1016/j.envsoft.2016.02.004_bib31) 2002 Willmott (10.1016/j.envsoft.2016.02.004_bib36) 2009; 43 Willmott (10.1016/j.envsoft.2016.02.004_bib38) 2015; 73 |
References_xml | – volume: 65 start-page: 470 year: 2001 end-page: 479 ident: bib30 article-title: Comparison of methods for interpolating soil properties using limited data publication-title: Soil Sci. Soc. Am. J. – start-page: 115 year: 2012 ident: bib22 article-title: Predicting Seabed Sand Content across the Australian Margin Using Machine Learning and Geostatistical Methods – year: 2013 ident: bib16 article-title: Applied Predictive Modeling – volume: 43 start-page: 749 year: 2009 end-page: 752 ident: bib36 article-title: Ambiguities inherent in sums-of-squares-based error statistics publication-title: Atmos. Environ. – year: 2002 ident: bib31 article-title: Modern Applied Statistics with S-Plus – volume: 62 start-page: 271 year: 2014 end-page: 299 ident: bib24 article-title: Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions publication-title: Environ. Model. Softw. – volume: 73 start-page: 167 year: 2015 end-page: 174 ident: bib38 article-title: Assessment of three dimensionless measures of model performance publication-title: Environ. Model. Softw. – volume: 40 start-page: 1 year: 2013 end-page: 20 ident: bib1 article-title: Characterising performance of environmental models publication-title: Environ. Model. Softw. – year: 2006 ident: bib11 article-title: Data Mining: Concept and Techniques – year: 2007 ident: bib4 article-title: The R Book – year: 2009 ident: bib12 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 31 start-page: 1365 year: 2011 end-page: 1376 ident: bib21 article-title: Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin publication-title: Cont. Shelf Res. – volume: 50 start-page: 885 year: 2007 end-page: 900 ident: bib27 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Am. Soc. Agric. Biol. Eng. – volume: 5 start-page: 89 year: 2005 end-page: 97 ident: bib15 article-title: Comparison of different efficiency criteria for hydrological model assessment publication-title: Adv. Geosci. – start-page: 271 year: 2002 end-page: 280 ident: bib7 article-title: What are the appropriate characteristics of an accuracy measure? publication-title: Predicting Species Occurrences: Issues of Accuracy and Scale – volume: 63 start-page: 335 year: 2010 end-page: 349 ident: bib14 article-title: Spatial predictions of cover attributes of rangeland ecosystems using regression kriging and remote sensing publication-title: Rangel. Ecol. Manag. – start-page: 137 year: 2008 ident: bib17 article-title: A Review of Spatial Interpolation Methods for Environmental Scientists – volume: 97 start-page: 255 year: 2000 end-page: 271 ident: bib2 article-title: Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities publication-title: Geoderma – volume: 60 start-page: 1237 year: 1996 end-page: 1247 ident: bib8 article-title: Comparison of kriging and inverse-distance methods for mapping parameters publication-title: Soil Sci. Soc. Am. J. – volume: 30 start-page: 609 year: 2007 end-page: 628 ident: bib5 article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review publication-title: Ecography – volume: 32 start-page: 2088 year: 2012 end-page: 2094 ident: bib37 article-title: A refined index of model performance publication-title: Int. J. Climatol. – volume: 30 start-page: 79 year: 2005 end-page: 82 ident: bib34 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. – volume: 377 start-page: 80 year: 2009 end-page: 91 ident: bib10 article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling publication-title: J. Hydrol. – volume: 26 start-page: 1647 year: 2011 end-page: 1659 ident: bib20 article-title: Application of machine learning methods to spatial interpolation of environmental variables publication-title: Environ. Model. Softw. – volume: 220 start-page: 3512 year: 2009 end-page: 3520 ident: bib26 article-title: The performance of state-of-the-art modelling techniques depends on geographical distribution of species publication-title: Ecol. Model. – year: 1981 ident: bib6 article-title: Applied Regression Analysis – volume: 20 start-page: 89 year: 2006 end-page: 102 ident: bib35 article-title: On the use of dimensioned measures of error to evaluate the performance of spatial interpolators publication-title: Int. J. Geogr. Inf. Sci. – volume: 85 start-page: 185 year: 1985 end-page: 203 ident: bib9 article-title: Response of potatoes to N fertilizer: dynamic model publication-title: Plant Soil – volume: 34 start-page: 232 year: 2011 end-page: 243 ident: bib23 article-title: Measuring and comparing the accuracy of species distribution models with presence-absence data publication-title: Ecography – volume: 19 start-page: 251 year: 2005 end-page: 278 ident: bib25 article-title: Comparison of interpolation methods for the prediction of reference evapotranspiration – an application in Greece publication-title: Water Resour. Manag. – year: 2012 ident: bib29 article-title: R: a Language and Environment for Statistical Computing – volume: 120 start-page: 75 year: 2004 end-page: 93 ident: bib13 article-title: A generic framework for spatial prediction of soil variables based on regression-kriging publication-title: Geoderma – volume: 6 start-page: 228 year: 2011 end-page: 241 ident: bib18 article-title: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors publication-title: Ecol. Inf. – volume: 7 start-page: 1247 year: 2014 end-page: 1250 ident: bib3 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: bib28 article-title: River flow forecasting through conceptual models part I – A discussion of principles publication-title: J. Hydrol. – volume: 63 start-page: 1309 year: 1982 end-page: 1313 ident: bib33 article-title: Some comments on the evaluation of model performance publication-title: Bull. Am. Meteorological Soc. – volume: 53 start-page: 173 year: 2014 end-page: 189 ident: bib19 article-title: Spatial interpolation methods applied in the environmental sciences: a review publication-title: Environ. Model. Softw. – volume: 24 start-page: 161 year: 2003 end-page: 180 ident: bib32 article-title: Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature publication-title: Clim. Res. – start-page: 115 year: 2012 ident: 10.1016/j.envsoft.2016.02.004_bib22 – volume: 43 start-page: 749 year: 2009 ident: 10.1016/j.envsoft.2016.02.004_bib36 article-title: Ambiguities inherent in sums-of-squares-based error statistics publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.10.005 – volume: 73 start-page: 167 year: 2015 ident: 10.1016/j.envsoft.2016.02.004_bib38 article-title: Assessment of three dimensionless measures of model performance publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.08.012 – volume: 220 start-page: 3512 issue: 24 year: 2009 ident: 10.1016/j.envsoft.2016.02.004_bib26 article-title: The performance of state-of-the-art modelling techniques depends on geographical distribution of species publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2008.10.019 – volume: 26 start-page: 1647 year: 2011 ident: 10.1016/j.envsoft.2016.02.004_bib20 article-title: Application of machine learning methods to spatial interpolation of environmental variables publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2011.07.004 – year: 2009 ident: 10.1016/j.envsoft.2016.02.004_bib12 – volume: 63 start-page: 1309 issue: 11 year: 1982 ident: 10.1016/j.envsoft.2016.02.004_bib33 article-title: Some comments on the evaluation of model performance publication-title: Bull. Am. Meteorological Soc. doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 – year: 2006 ident: 10.1016/j.envsoft.2016.02.004_bib11 – volume: 30 start-page: 609 year: 2007 ident: 10.1016/j.envsoft.2016.02.004_bib5 article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review publication-title: Ecography doi: 10.1111/j.2007.0906-7590.05171.x – start-page: 137 year: 2008 ident: 10.1016/j.envsoft.2016.02.004_bib17 – volume: 53 start-page: 173 year: 2014 ident: 10.1016/j.envsoft.2016.02.004_bib19 article-title: Spatial interpolation methods applied in the environmental sciences: a review publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2013.12.008 – volume: 5 start-page: 89 year: 2005 ident: 10.1016/j.envsoft.2016.02.004_bib15 article-title: Comparison of different efficiency criteria for hydrological model assessment publication-title: Adv. Geosci. doi: 10.5194/adgeo-5-89-2005 – year: 2002 ident: 10.1016/j.envsoft.2016.02.004_bib31 – volume: 20 start-page: 89 issue: 1 year: 2006 ident: 10.1016/j.envsoft.2016.02.004_bib35 article-title: On the use of dimensioned measures of error to evaluate the performance of spatial interpolators publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810500286976 – volume: 63 start-page: 335 year: 2010 ident: 10.1016/j.envsoft.2016.02.004_bib14 article-title: Spatial predictions of cover attributes of rangeland ecosystems using regression kriging and remote sensing publication-title: Rangel. Ecol. Manag. doi: 10.2111/REM-D-09-00074.1 – year: 2007 ident: 10.1016/j.envsoft.2016.02.004_bib4 – volume: 10 start-page: 282 year: 1970 ident: 10.1016/j.envsoft.2016.02.004_bib28 article-title: River flow forecasting through conceptual models part I – A discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 50 start-page: 885 issue: 3 year: 2007 ident: 10.1016/j.envsoft.2016.02.004_bib27 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Am. Soc. Agric. Biol. Eng. – volume: 31 start-page: 1365 year: 2011 ident: 10.1016/j.envsoft.2016.02.004_bib21 article-title: Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin publication-title: Cont. Shelf Res. doi: 10.1016/j.csr.2011.05.015 – volume: 7 start-page: 1247 year: 2014 ident: 10.1016/j.envsoft.2016.02.004_bib3 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1247-2014 – volume: 65 start-page: 470 year: 2001 ident: 10.1016/j.envsoft.2016.02.004_bib30 article-title: Comparison of methods for interpolating soil properties using limited data publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.652470x – volume: 34 start-page: 232 year: 2011 ident: 10.1016/j.envsoft.2016.02.004_bib23 article-title: Measuring and comparing the accuracy of species distribution models with presence-absence data publication-title: Ecography doi: 10.1111/j.1600-0587.2010.06354.x – volume: 19 start-page: 251 year: 2005 ident: 10.1016/j.envsoft.2016.02.004_bib25 article-title: Comparison of interpolation methods for the prediction of reference evapotranspiration – an application in Greece publication-title: Water Resour. Manag. doi: 10.1007/s11269-005-3179-2 – volume: 24 start-page: 161 year: 2003 ident: 10.1016/j.envsoft.2016.02.004_bib32 article-title: Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature publication-title: Clim. Res. doi: 10.3354/cr024161 – volume: 97 start-page: 255 year: 2000 ident: 10.1016/j.envsoft.2016.02.004_bib2 article-title: Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities publication-title: Geoderma doi: 10.1016/S0016-7061(00)00042-2 – volume: 120 start-page: 75 year: 2004 ident: 10.1016/j.envsoft.2016.02.004_bib13 article-title: A generic framework for spatial prediction of soil variables based on regression-kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2003.08.018 – volume: 377 start-page: 80 year: 2009 ident: 10.1016/j.envsoft.2016.02.004_bib10 article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.08.003 – year: 2012 ident: 10.1016/j.envsoft.2016.02.004_bib29 – volume: 30 start-page: 79 year: 2005 ident: 10.1016/j.envsoft.2016.02.004_bib34 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – start-page: 271 year: 2002 ident: 10.1016/j.envsoft.2016.02.004_bib7 article-title: What are the appropriate characteristics of an accuracy measure? – year: 2013 ident: 10.1016/j.envsoft.2016.02.004_bib16 – volume: 60 start-page: 1237 year: 1996 ident: 10.1016/j.envsoft.2016.02.004_bib8 article-title: Comparison of kriging and inverse-distance methods for mapping parameters publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1996.03615995006000040040x – volume: 62 start-page: 271 issue: 0 year: 2014 ident: 10.1016/j.envsoft.2016.02.004_bib24 article-title: Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.09.013 – volume: 40 start-page: 1 year: 2013 ident: 10.1016/j.envsoft.2016.02.004_bib1 article-title: Characterising performance of environmental models publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2012.09.011 – volume: 6 start-page: 228 year: 2011 ident: 10.1016/j.envsoft.2016.02.004_bib18 article-title: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2010.12.003 – volume: 85 start-page: 185 year: 1985 ident: 10.1016/j.envsoft.2016.02.004_bib9 article-title: Response of potatoes to N fertilizer: dynamic model publication-title: Plant Soil doi: 10.1007/BF02139623 – volume: 32 start-page: 2088 year: 2012 ident: 10.1016/j.envsoft.2016.02.004_bib37 article-title: A refined index of model performance publication-title: Int. J. Climatol. doi: 10.1002/joc.2419 – year: 1981 ident: 10.1016/j.envsoft.2016.02.004_bib6 |
SSID | ssj0001524 |
Score | 2.3746378 |
SecondaryResourceType | review_article |
Snippet | A comprehensive assessment of the performance of predictive models is necessary as they have been increasingly employed to generate spatial predictions for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Assessments Benchmarking Computer programs computer software Data variance decision making Environment management environmental management environmental models Error measure issues and policy Mathematical models Model assessment prediction Predictive accuracy Scale (ratio) Spatial interpolation methods Spatial predictions Variance |
Title | Assessing spatial predictive models in the environmental sciences: Accuracy measures, data variation and variance explained |
URI | https://dx.doi.org/10.1016/j.envsoft.2016.02.004 https://www.proquest.com/docview/1787963449 https://www.proquest.com/docview/1816069363 https://www.proquest.com/docview/2116891674 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hEBJ7GKwMjQ2QJ_G4tPlwHIe3qirqhsYLQ-qblTiOVAShalq0Com_fXexQwEJkPbo-GxZvvPP59wXwHEYlgXesqknUTv2yFDk5UZIT-eFn0pdZLIxxfw-F6NL_mscj9dg0MbCkFulw36L6Q1auy89t5u96WTSuwgiQZlGwoCyRoV8TBHsPCEp7z6s3DyQwBa2Fdwj6lUUT--qa6q7GtGOPLyETd3JX7ufXiB1c_2c7sBHpzeyvl3aJ1gzVQe225oMzB3RDmwOmzTUyw58eJJqsAN7w1VEG87j6OtduLdmXyRiNXlXY-d0RtYbwkHWFMqp2aRiqCgy82wOt131CetrvZhleslu7B_H-gcjz1N2hw_xhvMsqwrbwgHM_J1eZ7i04jNcng7_DEaeq8jgaZ7wuZdlKHgl6oBlWUqh8WlCCqaMNFUri4wvcp1gv9ao56BuUKaxzIMkKhMkMLFJoz1Yr24r8wVYoKWveV4IQyBSRlLgSzPzeRIHRayN3gfe8kFpl66cqmZcq9Yv7Uo59ilin_JDhTPtQ_dx2NTm63hvgGyZrJ4JnsI75b2h31uhUHgoydKSVeZ2UasAYRCRjfP0DRoZ4PFIIxG9ToOvcyFTChT5-v_L_AZb1LL-bQewPp8tzCFqUvP8qDkqR7DR_3k2Ov8HdQ8hEQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xomnjgW0FND4GnrRHQvPhuA5vFSoqX30ZSH2zEseRWkGomhaB9s_vLnb4mMSQeEx8Z1k5-3d3ufMdwK8wLHLUsokn0Tr2KFDkZUZIT2e5n0idp7IOxVwMxeCKn47i0RIcNXdhKK3SYb_F9Bqt3ZuO-5qd6Xjc-R1EgiqNhAFVjQr56AMsU3WquAXLvZOzwfARkJHG9rYV3COGp4s8ncmBKe8qBDxK8hK2eid_TUX9A9a1Bjr-CqvOdGQ9u7pvsGTKNnxp2jIwd0rb8LFfV6J-aMPKs2qDbdjoP11qw3kcfbUGf2zkF4lYRQnWODidUQCHoJDVvXIqNi4Z2orMvJjDfbHqkPW0XsxS_cBu7E_Hap9R8im7Q1-8Fj5Ly9w-IQMz99PrFJeWr8PVcf_yaOC5pgye5l0-99IU916BZmBRFFJo9E7IxpSRpoZlkfFFprs4rjWaOmgeFEkss6AbFV0kMLFJog1olbel-Q4s0NLXPMuFIRwpIinQ2Ux9FGGQx9roTeCNHJR2Fcupcca1alLTJsqJT5H4lB8qnGkTDh7ZprZkx1sMshGyerH3FKqVt1h_NptC4bmkYEtamttFpQJEQgQ3zpP_0MgAT0gSieh1GnTQhUzorsjW-5e5B58Glxfn6vxkeLYNn2nEprvtQGs-W5gfaFjNs113cP4CPxIjwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+spatial+predictive+models+in+the+environmental+sciences%3A+Accuracy+measures%2C+data+variation+and+variance+explained&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Li%2C+Jin&rft.date=2016-06-01&rft.issn=1364-8152&rft.volume=80&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.envsoft.2016.02.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon |