Ranking Regions, Edges and Classifying Tasks in Functional Brain Graphs by Sub-Graph Entropy
This paper considers analysis of human brain networks or graphs constructed from time-series collected from functional magnetic resonance imaging (fMRI). In the network of time-series, the nodes describe the regions and the edge weights correspond to the absolute values of correlation coefficients o...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; p. 7628 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.05.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper considers analysis of human brain networks or graphs constructed from time-series collected from functional magnetic resonance imaging (fMRI). In the network of time-series, the nodes describe the regions and the edge weights correspond to the absolute values of correlation coefficients of the time-series of the two nodes associated with the edges. The paper introduces a novel information-theoretic metric, referred as
sub-graph
entropy, to measure uncertainty associated with a
sub-graph
. Nodes and edges constitute two special cases of
sub-graph
structures. Node and edge entropies are used in this paper to rank regions and edges in a functional brain network. The paper analyzes task-fMRI data collected from 475 subjects in the Human Connectome Project (HCP) study for gambling and emotion tasks. The proposed approach is used to rank regions and edges associated with these tasks. The
differential
node (edge) entropy metric is defined as the difference of the node (edge) entropy corresponding to two different networks belonging to two different classes. Differential entropy of nodes and edges are used to rank top regions and edges associated with the two classes of data. Using top node and edge entropy features separately, two-class classifiers are designed using support vector machine (SVM) with radial basis function (RBF) kernel and leave-one-out method to classify time-series for emotion task
vs.
no-task, gambling task
vs.
no-task and emotion task
vs
. gambling task. Using node entropies, the SVM classifier achieves classification accuracies of 0.96, 0.97 and 0.98, respectively. Using edge entropies, the classifier achieves classification accuracies of 0.91, 0.96 and 0.94, respectively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-44103-8 |