Cumulative Dopamine Genetic Score predicts behavioral and electrophysiological correlates of response inhibition via interactions with task demand

Functional genetic polymorphisms in the brain dopamine (DA) system have been suggested to underlie individual differences in response inhibition, namely the suppression of a prepotent or inappropriate action. However, findings on associations between single DA polymorphisms and inhibitory control of...

Full description

Saved in:
Bibliographic Details
Published inCognitive, affective, & behavioral neuroscience Vol. 20; no. 1; pp. 59 - 75
Main Authors Enge, Sören, Sach, Mareike, Reif, Andreas, Lesch, Klaus-Peter, Miller, Robert, Fleischhauer, Monika
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Functional genetic polymorphisms in the brain dopamine (DA) system have been suggested to underlie individual differences in response inhibition, namely the suppression of a prepotent or inappropriate action. However, findings on associations between single DA polymorphisms and inhibitory control often are mixed, partly due to their small effect sizes. In the present study, a cumulative genetic score (CGS) was used: alleles previously associated with both impulsive behavior and lower baseline DA level, precisely the DRD4 Exon III 7-repeat, DAT1 VNTR 10-repeat and the COMT 158val allele, each added a point to the DA-CGS. Participants (N = 128) completed a Go/No-Go task varying in difficulty and EEG recordings were made with focus on the NoGo-P3, an ERP that reflects inhibitory response processes. We found a higher DA-CGS (lower basal/tonic DA level) to be associated with better performance (lower %FA and more adaptive responding) in the very demanding/rapid than in the less demanding/rapid condition, whereas the reverse pattern was true for individuals with a lower DA-CGS. A similar interaction pattern of DA-CGS and task condition was found for NoGo-P3 amplitude. In line with assumptions of distinct optimum DA levels for different cognitive demands, a DA-CGS-dependent variation of tonic DA levels could have modulated the balance between cognitive stability and flexibility, thereby affecting the optimal DA level required for the specific task condition. Moreover, a task demand-dependent phasic DA release might have added to the DA-CGS-related basal/tonic DA levels, thereby additionally affecting the balance between flexibility and stability, in turn influencing performance and NoGo-P3.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-7026
1531-135X
DOI:10.3758/s13415-019-00752-w