Organic Multi-Channel Optoelectronic Sensors for Wearable Health Monitoring

Recent progress in printed optoelectronics and their integration in wearable sensors have created new avenues for research in reflectance photoplethysmography (PPG) and oximetry. The reflection-mode sensor, which consists of light emitters and detectors, is a vital component of reflectance oximeters...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 128114 - 128124
Main Authors Khan, Yasser, Han, Donggeon, Ting, Jonathan, Ahmed, Maruf, Nagisetty, Ramune, Arias, Ana C.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent progress in printed optoelectronics and their integration in wearable sensors have created new avenues for research in reflectance photoplethysmography (PPG) and oximetry. The reflection-mode sensor, which consists of light emitters and detectors, is a vital component of reflectance oximeters. Here, we report a systematic study of the reflectance oximeter sensor design in terms of component geometry, light emitter and detector spacing, and the use of an optical barrier between the emitter and the detector to maximize sensor performance. Printed red and near-infrared (NIR) organic light-emitting diodes (OLEDs) and organic photodiodes (OPDs) are used to design three sensor geometries: (1) Rectangular geometry, where square OLEDs are placed at each side of the OPD; (2) Bracket geometry, where the OLEDs are shaped as brackets and placed around the square OPD; (3) Circular geometry, where the OLEDs are shaped as block arcs and placed around the circular OPD. Utilizing the bracket geometry, we observe 39.7% and 18.2% improvement in PPG signal magnitude in the red and NIR channels compared to the rectangular geometry, respectively. Using the circular geometry, we observe 48.6% and 9.2% improvements in the red and NIR channels compared to the rectangular geometry. Furthermore, a wearable two-channel PPG sensor is utilized to add redundancy to the measurement. Finally, inverse-variance weighting and template matching algorithms are implemented to improve the detection of heart rate from the multi-channel PPG signals.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2939798