RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment

Network slicing is one key enabler to provide the required flexibility and to realize the service-oriented 5G vision. Unlike the core network slicing, radio access network (RAN) slicing is still at its infancy and several works just start to investigate the challenges and potentials to enable the mu...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 34018 - 34042
Main Authors Chang, Chia-Yu, Nikaein, Navid
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Network slicing is one key enabler to provide the required flexibility and to realize the service-oriented 5G vision. Unlike the core network slicing, radio access network (RAN) slicing is still at its infancy and several works just start to investigate the challenges and potentials to enable the multi-service RAN, toward a serviced-oriented RAN architecture. One of the major concerns in the RAN slicing is to provide different levels of isolation and sharing as per slice requirement. Moreover, both control and user plane processing may be customized allowing a slice owner to flexibly control its service. Enabling dynamic RAN composition with flexible functional split for disaggregated RAN deployments is another challenge. In this paper, we propose a RAN runtime slicing system through which the operation and behavior of the underlying RAN could be customized and controlled to meet slice requirements. We present a proof-of-concept prototype of the proposed RAN runtime slicing system for LTE, assess its feasibility and potentials, and demonstrate the isolation, sharing, and customization capabilities with three representative use cases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2847610