Sample size recalculation in sequential diagnostic trials
Before a comparative diagnostic trial is carried out, maximum sample sizes for the diseased group and the nondiseased group need to be obtained to achieve a nominal power to detect a meaningful difference in diagnostic accuracy. Sample size calculation depends on the variance of the statistic of int...
Saved in:
Published in | Biostatistics (Oxford, England) Vol. 11; no. 1; pp. 151 - 163 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2010
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 1465-4644 1468-4357 1468-4357 |
DOI | 10.1093/biostatistics/kxp044 |
Cover
Summary: | Before a comparative diagnostic trial is carried out, maximum sample sizes for the diseased group and the nondiseased group need to be obtained to achieve a nominal power to detect a meaningful difference in diagnostic accuracy. Sample size calculation depends on the variance of the statistic of interest, which is the difference between receiver operating characteristic summary measures of 2 medical diagnostic tests. To obtain an appropriate value for the variance, one often has to assume an arbitrary parametric model and the associated parameter values for the 2 groups of subjects under 2 tests to be compared. It becomes more tedious to do so when the same subject undergoes 2 different tests because the correlation is then involved in modeling the test outcomes. The calculated variance based on incorrectly specified parametric models may be smaller than the true one, which will subsequently result in smaller maximum sample sizes, leaving the study underpowered. In this paper, we develop a nonparametric adaptive method for comparative diagnostic trials to update the sample sizes using interim data, while allowing early stopping during interim analyses. We show that the proposed method maintains the nominal power and type I error rate through theoretical proofs and simulation studies. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1465-4644 1468-4357 1468-4357 |
DOI: | 10.1093/biostatistics/kxp044 |