Controlling the Friction of Gels by Regulating Interfacial Oxygen During Polymerization
Hydrogel surfaces are of great interest in applications ranging from cell scaffolds and transdermal drug-delivery patches to catheter coatings and contact lenses. In this work, we propose a method to control the surface structure of hydrogels, thereby tailoring their frictional properties. The metho...
Saved in:
Published in | Tribology letters Vol. 69; no. 3; p. 86 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hydrogel surfaces are of great interest in applications ranging from cell scaffolds and transdermal drug-delivery patches to catheter coatings and contact lenses. In this work, we propose a method to control the surface structure of hydrogels, thereby tailoring their frictional properties. The method is based on oxygen inhibition of the free-radical polymerization reaction during synthesis and enables (i) control of friction over more than an order in magnitude and (ii) spatial control of friction as either a continuous gradient or a distinct pattern. The presented method has successfully been applied to acrylamide-, diacrylate- and methacrylate-based gels, illustrating the universality of the presented method, and its potential use in the above-mentioned applications.
Graphical Abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1023-8883 1573-2711 |
DOI: | 10.1007/s11249-021-01459-1 |