Clusters of anatomical disease-burden patterns in ALS: a data-driven approach confirms radiological subtypes
Amyotrophic lateral sclerosis (ALS) is associated with considerable clinical heterogeneity spanning from diverse disability profiles, differences in UMN/LMN involvement, divergent progression rates, to variability in frontotemporal dysfunction. A multitude of classification frameworks and staging sy...
Saved in:
Published in | Journal of neurology Vol. 269; no. 8; pp. 4404 - 4413 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0340-5354 1432-1459 1432-1459 |
DOI | 10.1007/s00415-022-11081-3 |
Cover
Summary: | Amyotrophic lateral sclerosis (ALS) is associated with considerable clinical heterogeneity spanning from diverse disability profiles, differences in UMN/LMN involvement, divergent progression rates, to variability in frontotemporal dysfunction. A multitude of classification frameworks and staging systems have been proposed based on clinical and neuropsychological characteristics, but disease subtypes are seldom defined based on anatomical patterns of disease burden without a prior clinical stratification. A prospective research study was conducted with a uniform imaging protocol to ascertain disease subtypes based on preferential cerebral involvement. Fifteen brain regions were systematically evaluated in each participant based on a comprehensive panel of cortical, subcortical and white matter integrity metrics. Using min–max scaled composite regional integrity scores, a two-step cluster analysis was conducted. Two radiological clusters were identified; 35.5% of patients belonging to ‘Cluster 1’ and 64.5% of patients segregating to ‘Cluster 2’. Subjects in Cluster 1 exhibited marked frontotemporal change. Predictor ranking revealed the following hierarchy of anatomical regions in decreasing importance: superior lateral temporal, inferior frontal, superior frontal, parietal, limbic, mesial inferior temporal, peri-Sylvian, subcortical, long association fibres, commissural, occipital, ‘sensory’, ‘motor’, cerebellum, and brainstem. While the majority of imaging studies first stratify patients based on clinical criteria or genetic profiles to describe phenotype- and genotype-associated imaging signatures, a data-driven approach may identify distinct disease subtypes without a priori patient categorisation. Our study illustrates that large radiology datasets may be potentially utilised to uncover disease subtypes associated with unique genetic, clinical or prognostic profiles. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0340-5354 1432-1459 1432-1459 |
DOI: | 10.1007/s00415-022-11081-3 |