IGF-1R nuclear import and recruitment to chromatin involves both alpha and beta subunits

Mature type 1 insulin-like growth factor receptors (IGF-1Rs) are heterotetrameric structures comprising two extracellular α-subunits disulphide-bonded to two transmembrane β-subunits with tyrosine kinase activity. IGF-1R is a well-known cell surface mediator of malignant growth, with an incompletely...

Full description

Saved in:
Bibliographic Details
Published inDiscover. Oncology Vol. 12; no. 1; p. 13
Main Authors Mills, Jack V., Osher, Eliot, Rieunier, Guillaume, Mills, Ian G., Macaulay, Valentine M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mature type 1 insulin-like growth factor receptors (IGF-1Rs) are heterotetrameric structures comprising two extracellular α-subunits disulphide-bonded to two transmembrane β-subunits with tyrosine kinase activity. IGF-1R is a well-known cell surface mediator of malignant growth, with an incompletely understood role upon nuclear import as a transcriptional regulator. Previous characterisation of nuclear IGF-1R focused on IGF-1Rβ. Here, we aimed to clarify the source of nuclear IGF-1R and investigate whether α-subunits contribute to nuclear IGF-1R function. Using prostate cancer cell lines DU145 and 22Rv1 we detected nuclear α- and β-subunits, with increase in nuclear signal upon IGF-treatment and reduction in response to IGF-1R inhibitor BMS-754807. Following biotinylation of cell surface proteins, biotinylated α- and β-subunits were detected in nuclear extracts of both cell lines. Furthermore, α- and β-subunits reciprocally co-precipitated from nuclear extract. Finally, we detected recruitment of both subunits to regulatory regions of chromatin, including the promoter of the oncogene JUN , that we previously identified in ChIP-seq as sites of IGF-1Rβ enrichment. These data confirm the cell surface origin of nuclear IGF-1R, suggest the presence of nuclear αβ complexes and reveal that both IGF-1Rα- and β-subunits contribute to pro-tumorigenic functions of nuclear IGF-1R.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2730-6011
2730-6011
DOI:10.1007/s12672-021-00407-8