On the Selection of Weight Decay Parameter for Faulty Networks

The weight-decay technique is an effective approach to handle overfitting and weight fault. For fault-free networks, without an appropriate value of decay parameter, the trained network is either overfitted or underfitted. However, many existing results on the selection of decay parameter focus on f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 21; no. 8; pp. 1232 - 1244
Main Authors Chi Sing Leung, Hong-Jiang Wang, Sum, J
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2010
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The weight-decay technique is an effective approach to handle overfitting and weight fault. For fault-free networks, without an appropriate value of decay parameter, the trained network is either overfitted or underfitted. However, many existing results on the selection of decay parameter focus on fault-free networks only. It is well known that the weight-decay method can also suppress the effect of weight fault. For the faulty case, using a test set to select the decay parameter is not practice because there are huge number of possible faulty networks for a trained network. This paper develops two mean prediction error (MPE) formulae for predicting the performance of faulty radial basis function (RBF) networks. Two fault models, multiplicative weight noise and open weight fault, are considered. Our MPE formulae involve the training error and trained weights only. Besides, in our method, we do not need to generate a huge number of faulty networks to measure the test error for the fault situation. The MPE formulae allow us to select appropriate values of decay parameter for faulty networks. Our experiments showed that, although there are small differences between the true test errors (from the test set) and the MPE values, the MPE formulae can accurately locate the appropriate value of the decay parameter for minimizing the true test error of faulty networks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1045-9227
1941-0093
DOI:10.1109/TNN.2010.2049580