Lactate Exposure Promotes Immunosuppressive Phenotypes in Innate Immune Cells

Introduction Lactate secreted by tumors is not just a byproduct, but rather an active modulator of immune cells. There are few studies aimed at investigating the true effect of lactate, which is normally confounded by pH. Such a knowledge gap needs to be addressed. Herein, we studied the immunomodul...

Full description

Saved in:
Bibliographic Details
Published inCellular and molecular bioengineering Vol. 13; no. 5; pp. 541 - 557
Main Authors Sangsuwan, Rapeepat, Thuamsang, Bhasirie, Pacifici, Noah, Allen, Riley, Han, Hyunsoo, Miakicheva, Svetlana, Lewis, Jamal S.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Introduction Lactate secreted by tumors is not just a byproduct, but rather an active modulator of immune cells. There are few studies aimed at investigating the true effect of lactate, which is normally confounded by pH. Such a knowledge gap needs to be addressed. Herein, we studied the immunomodulatory effects of lactate on dendritic cells (DCs) and macrophages (MΦs). Methods Bone marrow-derived innate immune cells were treated with 50 mM sodium lactate (sLA) and incubated for 2 days or 5 days at 37 °C. Controls included media, lipopolysaccharide (LPS), MCT inhibitors (α-cyano-4-hydroxycinnamic acid and AR-C15585). Flow cytometric analysis of immune phenotypes were performed by incubating cells with specific marker antibodies and viability dye. Differential expression analyses were conducted on R using limma-voom and adjusted p-values were generated using the Bejamini-Hochberg Procedure. Results Lactate exposure attenuated DC maturation through the downregulation of CD80 and MHCII expression under LPS stimulation. For MΦs, lactate exposure resulted in M2 polarization as evidenced by the reduction of M1 markers (CD38 and iNOS), and the increase in expression of CD163 and Arg1. We also revealed the role of monocarboxylate transporters (MCTs) in mediating lactate effect in MΦs. MCT4 inhibition significantly boosted lactate M2 polarization, while blocking of MCT1/2 failed to reverse the immunosuppressive effect of lactate, correlating with the result of gene expression that lactate increased MCT4 expression, but downregulated the expression of MCT1/2. Conclusions This research provides valuable insight on the influence of metabolic products on tumor immunity and will help to identify novel metabolic targets for augmenting cancer immunotherapies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor Shelly Peyton oversaw the review of this article.
ISSN:1865-5025
1865-5033
DOI:10.1007/s12195-020-00652-x